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Abstract

In the first part of this paper, we demonstrate the existence of global hy-

persurfaces of section of the Hamiltonian vector field of mechanical Hamilto-

nians of convex type, and the geodesic vector fields of convex hypersurfaces.

The result can be regarded as a generalization of Birkhoff’s annulus, and we

provide many examples including the Kepler problem.

In the second part, we investigate the periodic orbits of rotating Kepler

problem. We introduce a way to describe the moduli space of periodic orbits

by angular momentum and Laplace-Runge-Lenz vector. We then classify

every periodic orbit and compute the Conley-Zehnder index. The result can

be interpreted by symplectic homology.

Key words: Global hypersurface of section, Kepler problem, symplectic

geometry, Hamiltonian dynamics, Conley-Zehnder index

Student Number: 2018-26173
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Chapter 1

Introduction

Symplectic geometry is a rich and vibrant field, with one of its central

themes being the study of periodic Hamiltonian orbits and Reeb orbits.

Two cornerstone conjectures highlight the importance of this topic: the cel-

ebrated Arnold conjecture [Arn04], which explores the relationship between

the topology of a symplectic manifold and periodic Hamiltonian orbits, and

the Weinstein conjecture [Wei79], which asserts the existence of periodic

Reeb orbits. These foundational problems have spurred the development of

numerous powerful tools and results, most notably Floer homology [Flo89].

This thesis is centered on two interconnected topics: the theory of global

hypersurfaces of section and the periodic orbits of the rotating Kepler prob-

lem. Global hypersurfaces of section, originally introduced by Poincaré in

his pioneering work on celestial mechanics [Poi87] and further developed

by Birkhoff [Bir66], provide an elegant method for simplifying the study

of dynamical systems. By reducing the dynamics of a vector field on an

n-dimensional manifold to the dynamics of a diffeomorphism on an (n`1)-

dimensional manifold, these hypersurfaces enable a profound simplification

of the system’s complexity. Ghys aptly referred to the existence of such

structures as a “paradise for dynamicists” [Ghy09], highlighting their signif-

icance, particularly in the context of three-dimensional dynamics. A notable

breakthrough in this area was achieved by Hofer, Wysocki, and Zehnder,

who constructed disk-like global surfaces of section on dynamically convex
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CHAPTER 1. INTRODUCTION

S3 and proved the existence of exactly two or infinitely many periodic Reeb

orbits [HWZ98]. Subsequent developments in this line of research can be

found in [HSa11], [HMSa15], and [SaH18].

However, constructing global hypersurfaces of section in higher dimen-

sions presents significant challenges, particularly due to the instability of

the boundary, which must be a codimension-2 invariant submanifold of the

dynamical system. To address this issue, Moreno and van Koert [MvK22b]

proposed introducing symmetries into the system to ensure the existence

of invariant submanifolds, providing a concrete example in the context of

the restricted three-body problem. In this thesis, we establish the existence

of global hypersurfaces of section for two distinct classes of dynamical sys-

tems. The first class comprises mechanical Hamiltonian systems of convex

type, while the second involves geodesic flows on convex hypersurfaces in

Euclidean spaces. The results pertaining to the second class are part of a

joint work with Sunghae Cho [CL24] and include an analysis of the Kepler

problem. We anticipate that these findings will extend to broader classes of

examples and contribute to the development of higher-dimensional dynam-

ical systems theory.

The second focus of this thesis is the Kepler problem, one of the most

fascinating examples of Hamiltonian dynamical systems. The rotating Ke-

pler problem, inspired by the restricted three-body problem, resolves the

degeneracy of Keplerian orbits and provides a framework for computing the

Conley–Zehnder index and applying Floer theory. Building on the founda-

tional work of Albers, Fish, Frauenfelder, and van Koert [AFFvK13], which

computed the Conley–Zehnder index for periodic orbits of the planar ro-

tating Kepler problem, we extend these results to the spatial case. Specifi-

cally, we compute the Conley–Zehnder indices of isolated periodic orbits in

the spatial rotating Kepler problem. Furthermore, by analyzing the moduli

space of spatial Keplerian orbits, we employ the Morse–Bott spectral se-

quence to compute the Conley–Zehnder indices of degenerate orbits. These

results are expected to have significant applications to the study of the re-

stricted three-body problem, which can be understood as a perturbation of

the Kepler problem.
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Chapter 2

Preliminaries

This chapter introduces basic notions of Riemannian geometry, symplectic

geometry and symplectic dynamics. We assume that every manifold, map,

vector field and tensor is smooth for the rest of the paper. We refer [Spi79a]

and [Lee13] for the general properties of smooth manifolds.

2.1 Riemannian Geometry

In this section, we introduce basic notions of Riemannian geometry includ-

ing connections, geodesics, geodesic flows and curvatures. We refer [Mil63],

[KN63], [KN69], [CE75] and [Spi79b] for the general reference for the Rie-

mannian geometry.

2.1.1 Connections

Let M be a manifold. A symmetric positive definite 2-tensor g is called a

metric, and the pair (M, g) is called a Riemannian manifold. This can

be understood as an extension of the inner product on a tangent space to

the entire tangent bundle.

Let (M, g) be a Riemannian manifold, and let N ⊂M be a submanifold.

Then N is naturally a Riemannian manifold equipped with the restricted

metric g|N . If there exists a diffeomorphism φ : (M, gM ) → (N, gN ) such

3



CHAPTER 2. PRELIMINARIES

that φ∗gN = gM , we call φ an isometry and we say that (M, gM ) and

(N, gN ) are isometric.

Example 2.1.1. The tangent bundle of Euclidean space can be described

as TRn = {
∑
pi(∂qi)q : q ∈M} . The standard Euclidean metric on Rn is

defined by g =
∑
dqi ⊗ dqi. A round (n − 1)-sphere can be regarded as

a submanifold defined by the level set of f(q) = |q|2, equipped with the

inherited metric.

Let M be a manifold. A connection is a bilinear operator ∇ defined on

the space of vector fields on M , satisfying the following properties:

1. ∇fX(Y ) = f∇XY ,

2. ∇X(fY ) = f∇XY +X(f)Y ,

where X(f) is the directional derivative of f in the direction of X. A connec-

tion allows us to differentiate vector fields without using local coordinates.

In this sense, ∇ is also called the covariant derivative. Once ∇ is defined

on TM , we can extend ∇ to any tensor field on the tangent and cotangent

bundles by applying the Leibniz rule and the pairing of vector fields with

differential forms.

Note 2.1.2. A connection can be defined on any vector bundle or principal

bundle. In general, a connection distinguishes the horizontal direction in the

bundle, which is equivalent to choosing an embedding of the tangent bundle

of the base manifold into the tangent bundle of the total space. More detailed

descriptions of connections can be found in [KN63] or [Spi79b].

The choice of connection is not canonical in general, but there is a specific

connection for Riemannian manifolds. A connection ∇ on a Riemannian

manifold (M, g) is called the Levi-Civita connection if it satisfies the

following conditions:

1. (Compatibility) ∇g = 0, or equivalently,

X(g(Y, Z)) = g(∇XY,Z) + g(Y,∇XZ),

4



CHAPTER 2. PRELIMINARIES

2. (Torsion-free) ∇XY −∇YX = [X,Y ],

where [X,Y ] is the Lie bracket of X and Y . The following theorem can be

found in many references, including [KN63], [Mil63], [Spi79b] or [dC92].

Proposition 2.1.3 (Fundamental Theorem of Riemannian Geometry). The

Levi-Civita connection uniquely exists for any Riemannian manifold.

Proof. Let X,Y, Z be vector fields. We have

X(g(Y,Z)) = g(∇XY, Z) + g(Y,∇XZ)

Y (g(Z,X)) = g(∇Y Z,X) + g(Z,∇YX)

Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY )

It follows that

X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y ))

= g(∇XY +∇YX,Z) + g(∇XZ −∇ZX,Y ) + g(∇Y Z −∇ZY,X)

= 2g(∇XY, Z)− g([X,Y ], Z) + g([Y,Z], X)− g([Z,X], Y )

We conclude that

g(∇XY,Z) =
1

2
(X(g(Y,Z)) + Y (g(Z,X))− Z(g(X,Y ))

+g([X,Y ], Z)− g([Y,Z], X) + g([Z,X], Y )) .

Since every term on the right-hand side is independent of ∇, we have shown

the existence and uniqueness of the Levi-Civita connection.

For explicit computations, we assign a coordinate chart. Let (e1, · · · , en)
be a frame on a local chart of (M, g). For given ∇, we can write

∇eiej =
∑
k

Γk
ijek,

and conversely Γk
ij characterizes ∇ on local chart. We call Γk

ij the Christof-

fel symbols. For the simplicity, we will use the following notations in the

rest of this section while working with local coordinates:

5



CHAPTER 2. PRELIMINARIES

1. We write ei = e∗i for the dual frame, i.e., ei(ej) = δij .

2. For a matrix A = (aij), we write A−1 = aij .

3. (Einstein convention) Repeated indices (one lower and one upper) im-

ply summation. For example,
∑

iX
i∂i = Xi∂i.

4. Let ∂i denote the i-th partial derivative in the given chart, and let f

be a function. Then we write ∂if = f,i.

Lemma 2.1.4. Let (M, g) be a Riemannian manifold and ∇ be the Levi-

Civita connection. Then Christoffel symbols satisfies following identities.

1. Γk
ij = Γk

ji.

2. ∂igjk = Γa
ijgak + Γb

ikgjb.

3. Γk
ij =

1
2g

ka (gai,j + gja,i − gij,a)

Proof. The first two properties follow directly from the defining conditions

of the Levi-Civita connection. The third property is the local form of the

formula derived in the proof of Proposition 2.1.3.

2.1.2 Geodesics

There are many different approaches to defining the geodesics of a Rieman-

nian manifold. We follow the definition from [Mil63] and [KN63].==We first

define the notion of parallel transport. Let M be a Riemannian manifold,

∇ be the Levi-Civita connection and γ : [a, b] → M be a curve. Let V be

a vector field along γ, meaning that V is a section of γ∗TM . With a local

frame (ei), we can write Vt = V i(t)(ei)γ(t). We denote γ̇ = γ̇iei for the time

derivative of γ. The covariant derivative of V along γ is defined by

∇γ̇V = γ̇jV i
,jei + V i∇γ̇ei

Let q ∈ M and v ∈ TpM . Let γ : [a, b] → M be a curve in M such that

γ(a) = q and γ(b) = q′. Then, there exists a unique vector field V such that

Vp = v and ∇γ̇V = 0, due to the existence and uniqueness of the solution to

6



CHAPTER 2. PRELIMINARIES

the differential equation. We call v′ = Vq′ a parallel transport of v along

γ. The curve γ is a geodesic if

∇γ̇ γ̇ = 0.

In this sense, we say the geodesic is self-parallel.

Proposition 2.1.5 (Geodesic Equation). In local coordinate, a geodesic γ

satisfies

γ̈i + Γi
jkγ̇

j γ̇k = 0.

In particular, the geodesic γ is determined by the initial conditions γ(t0) and

γ̇(t0).

Proof. This directly follows from the local formulation of parallel transport

by substituting γ̇ for V . The second statement follows from the existence

and uniqueness of the solution to the second-order differential equation.

Corollary 2.1.6. Let γ be a geodesic. Then |γ̇| is constant along γ.

Proof. We have

∇γ̇g(γ̇(t), γ̇(t)) = ∇γ̇gij γ̇
iγ̇j = (∇γ̇gij)γ̇

iγ̇j + 2gij(∇γ̇γ
i)γj

= gij,kγ̇
iγ̇j γ̇k − 2gijΓ

i
klγ̇

j γ̇kγ̇l

=
(
Γa
ijgak + Γb

ikgjb

)
γ̇iγ̇j γ̇k − 2gijΓ

i
klγ̇

j γ̇kγ̇l = 0

We used the geodesic equation Proposition 2.1.5 in the third equality and

Lemma 2.1.4 in the fourth equality.

Example 2.1.7. In Euclidean space Rn, the metric gij = δij is constant, so

the Christoffel symbols vanish. Thus, the geodesic equation is γ̈i = 0, which

implies that the geodesics in Euclidean space are straight lines.

Example 2.1.8. Let Sn ⊂ Rn+1 be a round n-sphere. It’s well-known that

geodesics on Sn are great circles. To see this, we need to use a local coor-

dinate on Sn. We use stereographic projection, which is given by the

7



CHAPTER 2. PRELIMINARIES

formula
φ : Sn \ {(1, 0, · · · , 0)} → Rn

(x0, x1, · · · , xn) 7→
(

x1
1− x0

, · · · , xn
1− x0

)
.

The inverse is given by

φ−1 : Rn → Sn \ {(1, 0, · · · , 0)}

(q1, · · · , qn) 7→
(
1− |q|2

1 + |q|2
,

2q1
1 + |q|2

, · · · , 2qn
1 + |q|2

)
.

We have

∂qi =
−4qi

(1 + |q|2)2
∂x0 −

n∑
k=1

4qiqk
(1 + |q|2)2

∂xk
+

2

1 + |q|2
∂xi

and it follows

gij = g
(
∂qi , ∂qj

)
=

16qiqj
(1 + |q|2)4

+
16qiqj(1 + |q|2)

(1 + |q|2)4

− 16qiqj
(1 + |q|2)3

+
4

(1 + |q|2)2
δij

=
4

(1 + |q|2)2
δij

Using the formula in Lemma 2.1.4, we obtain

Γi
ii = − 2qi

1 + |q|2
, Γk

ik = − 2qi
1 + |q|2

, Γi
kk =

2qi
1 + |q|2

for i ̸= k, and otherwise Γi
jk = 0. Substituting into the geodesic equation,

we have

γ̈i −
n∑

k=1

2qk
1 + |q|2

γ̇iγ̇k +
∑
k ̸=i

2qi
1 + |q|2

γ̇kγ̇k = 0

Now let γ be a great circle lies on q0q1-plane starting at the south pole:

γ(t) = (− cos t, sin t, 0, · · · , 0) ∈ Sn ⊂ Rn+1.

8
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Under the stereographic projection, we have

γ(t) =

(
sin t

1 + cos t
, 0, · · · , 0

)
.

Then, we have

γ̇1 =
1

1 + cos t
, γ̈1 =

sin t

(1 + cos t)2

For i ̸= 1, every term in the geodesic equation is zero. If i = 1, we have

γ̈1 − 2q1
1 + |q|2

(γ̇1)2 =
sin t

(1 + cos t)2
− 2 sin t

1 + cos t

(1 + cos t)2

2(1 + cos t)

1

(1 + cos t)2
= 0.

Thus, γ is a geodesic. Any other great circle can be mapped to γ by an

SO(n + 1)-action on Sn, so every great circle is a geodesic. Conversely, for

any initial condition of a geodesic, we can find a great circle with the same

initial condition. This proves that every geodesic is a great circle.

Let γ : [a, b] → M be a curve. The length functional is a function

L : C∞([a, b],M) → R defined by

L(γ) =

∫ b

a
g(γ̇(t), γ̇(t))1/2dt

Here’s a theorem, which was chosen as the definition of geodesic in [CE75]

and [Spi79b].

Proposition 2.1.9. A curve γ : [a, b] →M is a geodesic if and only if it is

a critical point of the length functional L.

Proof. See [Mil63], Chapter 12.

A Riemannian manifold (M, g) can be regarded as a metric space by

introducing the distance

dg(q0, q1) = inf
γ(t0)=q0
γ(t1)=q1

L(γ).

This infimum should be realized by a minimizing geodesic from q0 to q1, if

one exists.

9
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Theorem 2.1.10 (Hopf-Rinow). Let (M, g) be a Riemannian manifold.

Then the following statements are equivalent.

1. A closed and bounded subset of M is compact.

2. The manifold M is complete as a metric space.

3. The manifoldM is geodesically complete, meaning that any geodesic

can be extended infinitely in both directions.

Proof. See [KN63], Chapter IV.

The exponential map is defined by

exp : TM → TM

(q, p) 7→ (γ(1), γ̇(1)) ,

where γ is the geodesic starting at q with initial velocity p. By Theo-

rem 2.1.10, the exponential map is globally defined if M is a complete man-

ifold. We can define a time-dependent diffeomorphism on TM by

φt(q, p) = expq(tp),

which is called the geodesic flow of M . Notice that φ0 is the identity.

If a time-dependent diffeomorphism φt from a manifold to itself is given

and φ0 = Id, we can find a vector field X such that φt = FlXt , the flow of X,

by differentiating with respect to t at t = 0. It follows that for a Riemannian

manifold (M, g), there exists a unique vector field Xg which generates the

geodesic flow, and it is called the geodesic vector field.

Let SrTM denote the subset of TM consists of vectors of length r ≥ 0.

Since the geodesic flow preserves the length by Corollary 2.1.6, we can see

that SrTM is invariant subset of Xg. In particular, M ≃ S0TM is the zero

locus of Xg.

Let N ⊂ M be a submanifold of a Riemannian manifold (M, g). We

call N a totally geodesic submanifold if exp maps TN into TN . By

definition, a submanifold is totally geodesic if and only if it is invariant

under the geodesic flow.

10
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We call i : M → M an isometric involution if i is an isometry and

i2 = IdM . The isometric involution is very useful for finding totally geodesic

submanifolds, as we can see in the following theorem.

Theorem 2.1.11. Let (M, g) be a Riemannian manifold and N be a closed

submanifold. Assume that there exist a tubular neighborhood ν(N) of N and

that N is the fixed point locus of i. Then N is a totally geodesic submanifold.

Proof. See [dC92], Chapter VII.8.

Example 2.1.12. Recall Example 2.1.8. Consider the isometric involution

defined on the sphere,

i : Sn → Sn ⊂ Rn+1

(x0, x1, · · · , xn) 7→ (−x0, x1, · · · , xn).

The invariant subset of i is the equator

Sn−1 =
{
(0, x1, · · · , xn) :

∑
x2j = 1

}
⊂ Sn ⊂ Rn+1.

Since a great circle lies on the surface spanned by its initial position and

velocity, Sn−1 is a totally geodesic submanifold.

2.1.3 Curvatures

Let (M, g) be a Riemannian manifold and ∇ be the Levi-Civita connection.

We define the Riemann curvature tensor as the following (3, 1)-tensor

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z.

We present the local formula for the Riemann curvature tensor.

Lemma 2.1.13. Let (M, g) be a Riemannian manifold and ei be a local

frame. We write R(ei, ej)ek = Rl
ijkel, then the components are given by

Rl
ijk = Γl

jk,i − Γl
ik,j + Γp

jkΓ
l
ip − Γp

ikΓ
l
jp

11
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Let q ∈M and v, w ∈ TqM . Denote ||v∧w|| as the area of parallelogram

spanned by v and w. We define the sectional curvature by

KM (v, w) =
g (R(v, w)w, v)

||v ∧ w||2

Note that this definition only depends on the plane spanned by v and w, so

KM is defined on the 2-Grassmannian bundle of TM .

There are many qualitative explanation about what curvature measures.

We introduce a formula whose derivation can be found in [CE75], Chapter

1.4. Let γ : I → M be a geodesic with γ(0) = q. Let α be a variation of

γ, which means that α : I × (−ε, ε) → M and α(−, s) = αs(−) = γ. For

simplicity, we denote γ̇ = T , ∂sα(−, s) = V . Let w ∈ TpM andW be parallel

extension of w along γ, which means ∇γ̇W = 0 and Wq = w. Then we have

the following Taylor expansion

||d exp(tW )||2 = t2 − 1

3
g (R(w, T )T,w) t4 +O(t5).

If we further assume that w and T are orthonormal, we have

||d exp(tW )||2 = t2 − 1

3
KM (w, T )t4 +O(t5)

The left-hand side term d exp(tW ) measures the deviation of geodesics. One

can see that the geodesics get closer if KM is positive, and scatter if KM is

negative. This property can also be observed in the Gaussian curvature of

surfaces, see for example [dC76].

Example 2.1.14. As mentioned in Example 2.1.7, the Christoffel symbols

of Euclidean space vanish, and so does the Riemann curvature. Hence the

Euclidean space has constant sectional curvature 0.

Example 2.1.15. Let Sn be a round sphere. Using the result from Ex-

ample 2.1.8 we can compute the sectional curvature of Sn in terms of the

12
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stereographic projection. We have

Γi
kk,i =

∂

∂qi

2qi
1 + |q|2

=
2

1 + |q|2
− 4q2i

(1 + |q|2)2
,

Γi
ik,k =

∂

∂qk

(
− 2qk
1 + |q|2

)
= − 2

1 + |q|2
+

4q2k
(1 + |q|2)2

,

Γp
kkΓ

i
ip = Γi

kkΓ
i
ii + Γk

kkΓ
i
ik +

∑
j ̸=i,k

Γj
kkΓ

i
ij =

4(q2i − q2k)

(1 + |q|2)2
−
∑
j ̸=i,k

4q2j
(1 + |q|2)2

,

Γp
ikΓ

i
kp = Γi

ikΓ
i
ki + Γk

ikΓ
i
kk =

4(q2k − q2i )

(1 + |q|2)2
.

Thus, we have

Ri
ikk = Γi

kk,i − Γi
ik,k + Γp

kkΓ
i
ip − Γp

ikΓ
i
kp

=
4

1 + |q|2
− 4|q|2

(1 + |q|2)2
=

4

(1 + |q|2)2
.

Therefore, the sectional curvature is

KSn(ei, ek) =
g(R(ei, ek)ek, ei)

||ei ∧ ek||2
=
giiR

i
ikk

giigkk
=
Ri

ikk

gkk
= 1.

This shows that Sn has constant sectional curvature 1, which is consistent

with the fact that S2 has constant Gaussian curvature 1.

Let N ⊂M be an oriented submanifold of codimension 1, and ν be the

unit normal vector field on N . We define the second fundamental form

S as an operator that assigns to each tangent vector of N a tangent vector

of M by

S(v) = ∇vν.

This definition is consistent with the second fundamental form used in the

geometry of surfaces, which can be found in [dC76].

Proposition 2.1.16. Let N ⊂ M be an oriented submanifold of codimen-

13
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sion 1. Then the following formula holds.

KN (v, w) = KM (v, w) +
g(S(v), v)g(S(w), w)− g(S(v), w)2

g(v, v)g(w,w)− g(v, w)2

Proof. See [dC92], Theorem 6.2.5.

The formula becomes simpler in the case of a hypersurface in Euclidean

space, where the sectional curvature vanishes.

Corollary 2.1.17. Let M ⊂ Rn be an oriented submanifold of codimension

1. Let v, w be orthonormal vector fields on TM . Then the following holds.

KM (v, w) = g(S(v), v)g(S(w), w)− g(S(v), w)2.

Example 2.1.18. Consider the round sphere Sn ⊂ Rn+1 mentioned in

Example 2.1.8. We can take ν =
∑n

i=0 qi∂qi as a unit normal vector. For

vi = ∂qi , one can see that S(vi) = vi, and thus from Proposition 2.1.16, we

have KN (vi, vj) = 1. This result is consistent with Example 2.1.15.

We now focus on a specific type of manifolds: convex hypersurfaces in

Euclidean space. We say a domain D ⊂ Rn+1 is convex if for any q0, q1 ∈ D,

the straight line segment connecting q0 and q1 lies in D. For example, the

standard disc is convex. We callM ⊂ Rn+1 a convex hypersurface ifM is

a regular level set of some function f and bounds a compact convex domain.

For example, a standard round sphere is a convex hypersurface.

A function on Rn+1 is convex if for any q0, q1 ∈ Rn+1 and 0 ≤ t ≤ 1,

f(tq0 + (1− t)q1) ≤ tf(q0) + (1− t)f(q1).

If the strict inequality holds for 0 < t < 1, we call f is strictly convex.

Lemma 2.1.19. Let M = f−1(c) ⊂ Rn+1 be a regular level set.

1. If Hess(f) is positive definite on M , then f is strictly convex.

2. If f is strictly convex, then M is a convex hypersurface.

3. If M is a convex hypersurface, then M is diffeomorphic to a sphere.

14
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Proof. We only prove the third statement. Let M be convex, bounding a

compact convex region D. After translation, we can assume that 0 is in the

interior of D. We define φ : M → Sn by φ(x) = x/||x||. By convexity, φ is

a smooth injective map, which must be a diffeomorphism.

Remark 2.1.20. We can treat the case of f with a negative definite Hessian

similarly, because in that case, we can use −f instead of f . If M = f−1(c),

then M = (−f)−1(−c), and with Lemma 2.1.19, we can see that M is still

a convex hypersurface. In short, it’s enough to require the Hessian of f to

be either positive or negative definite to ensure that its regular level set is

convex.

2.2 Symplectic Geometry

In this section, we introduce general notions of symplectic geometry, in-

cluding symplectic manifolds, contact manifolds and Liouville domains. We

refer to [CdS01], [Ber01] and [MS17] as general references for symplectic

geometry.

2.2.1 Symplectic Manifolds

Let W be a manifold without boundary. A nondegenerate 2-form ω on W is

called a symplectic form and we call (W,ω) a symplectic manifold. Note

that a symplectic manifold must be even-dimensional, because every 2-form

is degenerate in odd dimensions. Let (W1, ω1) and (W2, ω2) be symplectic

manifolds and let φ :W1 →W2 be a diffeomorphism. If φ∗ω2 = ω1, we say φ

is a symplectomorphism. Consider the symplectomorphism φ : (W,ω) →
(W,ω) where the symplectic form ω is exact, so ω = dλ for some 1-form

λ. We call φ is an exact symplectomorphism if φ∗λ − λ = df for some

function f . Let V ⊂W be a submanifold such that ω|V is also a symplectic

form on V . We call V a symplectic submanifold.

Example 2.2.1. Consider R2n = {(q, p) : q, p ∈ Rn}. Define 2-form

ω =
∑

dpi ∧ dqi.

15



CHAPTER 2. PRELIMINARIES

Then it is clear that ω is a symplectic form. Here, R2n can be regarded as a

cotangent bundle of Rn, and will be generalized in the next example.

Example 2.2.2. Let M be a manifold and W = T ∗M be its cotangent

bundle. Let (q, p) ∈ U be a local coordinate chart of W . To be precise, pi

represents the coefficient of dqi in U . We define a canonical 1-form on W

locally by

λ(q,p) = pdq =
∑

pidqi

Using the coordinate changing formula, we can see that λ can be patched

together to form a global 1-form. It’s clear that the derivative dλ = dp ∧ dq
is a symplectic form.

We note that a diffeomorphism between manifolds induces a symplecto-

morphism between their cotangent bundles via pullback. Additionally, if N

is a submanifold of M , then T ∗N is a symplectic submanifold of T ∗M .

Note 2.2.3. An important opposite concept to symplectic submanifold is

Lagrangian submanifold, which is a submanifoldN of dimension dimM/2

such that ω|N = 0. This concept is crucial for defining Lagrangian Floer ho-

mology and the Fukaya category. See [CdS01] or [MS17] for basic and general

discussions on Lagrangian submanifold.

Theorem 2.2.4 (Darboux Lemma). Let (W,ω) be a symplectic manifold.

For any point in W , there exists a local chart U around the point with

coordinates (q, p) such that

ω =
∑

dpi ∧ dqi.

Proof. See [Arn89] Section 43.B or [CdS01] Theorem 8.1.

The theorem means that any symplectic manifold is locally symplecto-

morphic to an open subset or (R2n, ωstd). This implies that the local geom-

etry of a symplectic manifold can be fully understood in terms of Euclidean

space, which is distinct from that of Riemannian geometry.

We note the relation between symplectic forms and Riemannian metrics.

Let W be an even-dimensional manifold. An almost complex structure

16
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on M is a bundle map J : TW → TW such that J2 = −Id. A complex

structure on a complex manifold is an almost complex structure, but the

converse is not generally true.

Let ω be a symplectic form on W and J be an almost complex structure

on M . If

g(−,−) = ω(−, J−)

defines a Riemannian metric, we call ω and J are compatible and (ω, J, g)

a compatible triple.

Proposition 2.2.5. Let W be an even-dimensional manifold. If any two of

the following three are given,

1. A symplectic form ω

2. A Riemannian metric g

3. An almost complex structure J

then there exists the third one which is compatible with the given two struc-

tures. In particular, any symplectic manifold admits a compatible almost

complex structure.

Proof. See [CdS01] Chapter 12, 13. The last statement follows from the fact

that any manifold admits a Riemannian metric.

Example 2.2.6. Consider T ∗Rn ≃ R2n equipped with the standard sym-

plectic form ω = dp ∧ dq. Let us denote ∂pi = vi, ∂qi = wi. Let J be a

standard complex structure on R2n such that J(vi) = wi, J(wi) = −vi.
Then we can see that ω(−, J−) defines a standard Euclidean metric on R2n.

With this basis, we can write

ω(v, Jw) = vtΩJw = vtw

so that Ω, the matrix describes the symplectic form, is equal to −J . Under
the basis {v1, w1, · · · , vn, wn}, we have

Ω = diag

((
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

))
.

17



CHAPTER 2. PRELIMINARIES

2.2.2 Contact Manifolds

Let Y be a (2n + 1)-dimensional manifold, and ξ let be a distribution of

codimension 1 on Y . We can locally write ξ as kerα for some 1-form α.

Assume that ξ is coorientable, which means that TW/ξ is orientable. In this

case, we can find a globally defined 1-form α. If α∧ (dα)n is a volume form,

we say α is a contact form, ξ = kerα is a contact structure, and (W, ξ)

is a contact manifold.

Example 2.2.7. Let M be a Riemannian manifold, and let Y = ST ∗M

be a unit cotangent bundle of M . Then the canonical 1-form defined in

Example 2.2.2 is a contact form.

Let (Y1, ξ1) and (Y2, ξ2) be contact manifolds, and let φ : Y1 → Y2 be

a diffeomorphism. If dφξ1 = ξ2, we call (Y1, ξ1) and (Y2, ξ2) are contacto-

morphic, and φ is a contactomorphism. This can be understood as a

diffeomorphism that preserves contact structure. Note that this condition

does not require φ to preserve contact forms.

Similar to the symplectic manifold, the local geometry of contact mani-

fold is trivial in the sense of the following theorem.

Theorem 2.2.8 (Darboux Lemma). Let (Y, kerα) be a contact manifold.

Then, for any point in Y , there exists a local chart U with coordinate (x, y, z)

such that

α =
∑

xidyi + dz.

Proof. See [Arn89] Appendix 4.

Let (Y, kerα) be a contact manifold. A vector field R such that α(R) = 1

and iRdα = 0 is called theReeb vector field. From the definition, the Reeb

vector field exists uniquely for a given contact form α and never vanishes.

Note that the definition of the Reeb vector field depends on the choice of

the contact form, so contactomorphic contact manifolds can admit different

Reeb vector fields. The role of the Reeb vector field in this paper will be

discussed in Section 2.3.1.
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2.2.3 Liouville Domains

Let W be a manifold with boundary, and let ω = dλ be an exact 2-form

such that (W̊ , ω) is a symplectic manifold, where W̊ is the interior of W . A

vector field X such that iXω = ω(X,−) = λ is called a Liouville vector

field. If a Liouville vector field X exists and defines and points outward on

the boundary, we call (W,λ) a Liouville domain.

Example 2.2.9. Let M be a Riemannian manifold, and let T ∗
≤1M be the

submanifold of T ∗M consisting of cotangent vectors of length less or equal

to 1. Consider the outward normal vector field X, locally defined by

X =
∑

pi
∂

∂pi
.

Then for λ = pdq and ω = dp ∧ dq, we can see that iXω = λ, which shows

that (T ∗
≤1M,λ) is a Liouville domain.

The previous example implies that the boundary of Liouville domain

can be regarded similarly to the unit cotangent bundle. Indeed, a Liouville

domain can be completed to a symplectic manifold in a canonical way by

attaching ∂W × [1,∞) with an appropriate symplectic form, which is called

the symplectization of ∂W , along its boundary. This notion will be used to

define symplectic homology in Section 2.5.

Here is a connection between the Liouville domain and contact manifold,

which is the main motivation for introducing the notion of Liouville domains.

Proposition 2.2.10. Let (W,λ) be a Liouville domain and X be a Liouville

vector field. Then, a hypersurface Y transverse to X is a contact manifold

with contact form λ|Y . In particular, (∂W, kerλ|∂W ) is a contact manifold.

Proof. Let q ∈ Y , and let {v1, · · · , v2n−1} be a basis of TqY . Since Y is

transverse to X, the set {Xq, v1, · · · , v2n−1} forms a basis of TpW . Now we

have

λ ∧ (dλ)n−1(v1, · · · , v2n−1) = iXω ∧ (dλ)n−1(v1, · · · , v2n−1)

= ωn(Xq, v1, · · · , v2n−1).
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By the nondegeneracy of ω, the result follows.

Example 2.2.11. We can apply Proposition 2.2.10 to Example 2.2.9. It

follows that the unit cotangent bundle ST ∗M of a manifold is a contact

manifold. A contact form is given by λ = pdq.

2.3 Hamiltonian Dynamics

In this section, we introduce basic notions of Hamiltonian dynamics includ-

ing Hamiltonian vector fields, Poisson brackets and Hamiltonian action. We

also describe the geodesic vector field as a Hamiltonian vector field. We refer

to [HZ11] and [MS17] for general reference of Hamiltonian dynamics.

2.3.1 Hamiltonian Dynamics

Let (W,ω) be a symplectic manifold. Given a function H : W → R, we can

associate a vector field XH to H via

(iXH
)ω(−) = ω(XH ,−) = −dH(−).

The vector field XH uniquely exists due to the non-degeneracy of ω. We

say XH is a Hamiltonian vector field, and in this sense, we call H a

Hamiltonian function or simply Hamiltonian. We also say (M,ω,H) is

a Hamiltonian system.

If a diffeomorphism from W to itself can be written as a time 1-flow of

a Hamiltonian vector field, we say it is a Hamiltonian diffeomorphism.

We might also use a time-dependent Hamiltonian H : W × R → R to de-

fine time-dependent Hamiltonian diffeomorphism. The name “Hamiltonian”

came from the Hamiltonian formulation in classical mechanics, which is ex-

plained in the following example.

Example 2.3.1. Let W = T ∗Rn, ω = ωstd = dp ∧ dq, and H = H(q, p) be

any function. Let the Hamiltonian vector field of H have the form XH =
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∑
ai∂qi + bi∂pi . By definition, we have

−iXω =
∑

(aidpi − bidqi) =
∑(

∂H

∂qi
dqi +

∂H

∂pi
dpi

)
It follows that

XH =
∑(

∂H

∂pi
∂qi −

∂H

∂qi
∂pi

)
.

Let V be a function defined on the base manifold Rn, and define a Hamil-

tonian on T ∗Rn by

H(q, p) =
1

2
||p||2 + V (q).

This is called a mechanical Hamiltonian, which describes the mechanical

energy of a particle with a potential function V depending only on the

position. From the above formula, we have

XH =
∑(

pi∂qi −
∂V

∂qi
∂pi

)
.

The differential equation describing integral curve γ = (x, y) of XH can be

written as

q̇i(t) = pi(t), ṗi(t) = −∂V
∂qi

(t)

or equivalently

p̈(t) = −∂V
∂q

(t)

This is exactly the same as the Newton’s second law of motion.

In particular, let V (q) = 0, which describes a free particle without any

external force. Then we can see that the equation of motion is q̈(t) = 0.

This can be generalized to the geodesic on a Riemannian manifold, which is

explained in Section 2.3.4.

Lemma 2.3.2. A Hamiltonian diffeomorphism is a symplectomorphism.

Proof. Let φt be a Hamiltonian diffeomorphism of a symplectic manifold

(W,ω), generated by a Hamiltonian H. Then we have

(
FlXH

)∗
ω = LXH

ω = −diXH
ω = −d(dH) = 0.
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We used Cartan’s magic formula for the second equality.

The key property of a Hamiltonian vector field XH to define a symplec-

tomorphism is that diXH
ω = 0. In this sense, we say a vector field X on a

symplectic manifold is a symplectic vector field if diXω = 0. The flow of

a symplectic vector field is a symplectomorphism. Note that if H1(W ) = 0,

then every closed form is exact, so every symplectic vector field is a Hamil-

tonian vector field.

Lemma 2.3.3. Let H be a Hamiltonian defined on a symplectic manifold

(W,ω), and XH be a Hamiltonian vector field.

1. (XH)p = 0 if and only if dHp = 0.

2. XH is tangent to the regular level set of H. In other words, H is

preserved under the Hamiltonian flow FlXH .

Proof. The first statement is trivial from the definition of a Hamiltonian

vector field. For the second statement, we have dH(XH) = −ω(XH , XH) =

0. Note that the second statement can be understood as the conservation of

mechanical energy.

From Lemma 2.3.3, we can see that the Hamiltonian vector field pre-

serves the level set of the Hamiltonian. Hence we can consider the Hamilto-

nian dynamics restricted to the level set. Let (W,ω) be a symplectic mani-

fold and H : W → R be a Hamiltonian. For a regular value c of H, we call

Y = H−1(c) is of contact type if there exists a vector field X, which is

positively transverse to Y , which means dH(X) > 0, and LXω = ω. In this

case, the sublevel setWc = H−1(−∞, c] is a Liouville domain with the Liou-

ville vector field X, and from Proposition 2.2.10, we can see that Y = ∂Wc

is a contact manifold with the contact form iXω|Y ,.

Proposition 2.3.4. Let H be a Hamiltonian defined on a symplectic man-

ifold (W,ω) and c be a regular value of H. If Y = H−1(c) is a level set of

contact type, the Hamiltonian vector field XH on H−1(c) is parallel to the

Reeb vector field. Therefore, the Hamiltonian orbit of H is a reparametriza-

tion of the Reeb orbit.
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Proof. Let X be a Liouville vector field. We have

iXH
ω = −dH = 0 on H−1(c)

iXH
iXω = ω(X,XH) = dH(X) > 0.

Since XH ̸= 0, XH is parallel to the Reeb vector field.

Corollary 2.3.5. Let H1, H2 : (M,ω) → R be Hamiltonians and c1, c2

be regular values of H1, H2 such that H−1
1 (c) = H−1

2 (c) = Y . Then XH1

and XH2 are parallel on Y . In other words, the level set determines the

Hamiltonian flow up to reparametrization.

2.3.2 Poisson Brackets

Let H,F : (W,ω) → R be Hamiltonians. The Poisson bracket is defined

by

{H,F} := ω(XH , XF ).

Lemma 2.3.6. Let H,F be Hamiltonians on (W,ω). Then the followings

hold:

1. {H,F} = dH(XF ) = XF (H).

2. {H,F} = −{F,H}.

3. If (W,ω) = (T ∗Rn, ωstd), we have

{H,F} =
∑ ∂H

∂xj

∂F

∂yj
− ∂H

∂yj

∂F

∂xj
.

Proof. The first two statements can be directly derived from the definition.

For the last statement, we use the formula given in Example 2.3.1. Using

first statement of this lemma, we have

{H,F} = dH(XF ) =

(∑ ∂H

∂xj
dxj +

∂H

∂yj
dyj

)(∑ ∂F

∂yj

∂

∂xj
− ∂F

∂xj

∂

∂yj

)
=
∑(

∂H

∂xj

∂F

∂yj
− ∂H

∂yj

∂F

∂xj

)
.
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Lemma 2.3.6 implies that the Poisson bracket measures how much two

Hamiltonian flows do not commute. In particular, the first statement shows

that if {H,F} = 0, then H is preserved under the Hamiltonian flow of F and

vice versa. Intuitively, in this case we can say that H and F are independent.

In particular, if {H,F} = 0 we have

Fl
XH+F

t = FlXH
t ◦ FlXF

t

since their flow commutes. We note a celebrated theorem of Arnold and

Liouville, the proof of which can be found in [Arn89].

Theorem 2.3.7 (Arnold-Liouville). Let (M,ω) be a 2n-dimensional sym-

plectic manifold and Fi : M → R, i = 1, · · · , n be Hamiltonians. Let

F = (F1, · · · , Fn) : M → Rn, and let c ∈ Rn be a regular value of F .

Assume that

1. The Hamiltonians Fi Poisson-commute, which means {Fi, Fj} = 0 for

every i, j.

2. The regular level set L = F−1(c) is connected and compact.

Then there exists a tubular neighborhood ν(L) of L such that

1. The n-dimensional submanifold L is a Lagrangian torus, and ν(L) is

diffeomorphic to Tn ×Dn.

2. There exists a coordinate {ϕ, S} on ν(L) such that

(a) The symplectic form can be written as

ω =
∑

dSi ∧ dϕi

(b) The coordinates Si only depend on Fi.

(c) Each Hamiltonian flow of Fi is linear in the coordinate.
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We say the Hamiltonian system (M,ω,H) is an integrable system

if there exist F2, · · · , Fn which satisfy the assumptions of Theorem 2.3.7.

The coordinates introduced in the theorem are called the action-angle

coordinate. The integrable system is deeply understood and studied system

due to its simplicity.

Let (W,ω) be a symplectic manifold, H̃ be a Hamiltonian and V ⊂ W

be a symplectic submanifold. Then H = H̃|V also defines a Hamiltonian

vector field field XH on V , but it is not the same as the Hamiltonian vector

field XH̃ restricted to V . In particular, XH̃ |V is not tangent to V in general.

Thus we need a projection formula for explicit computation.

Proposition 2.3.8. Let W be a symplectic manifold, and H̃ be a Hamil-

tonian on W . Let f, g : W → R be smooth functions and let c1, c2 be the

regular values such that V = f−1(c1)∩g−1(c2) ⊂W is a symplectic subman-

ifold of W of codimension 2. Furthermore, assume that {f, g}, {f, H̃}, and
{g, H̃} are nonzero. Let H = H̃|V . The Hamiltonian vector field XH on V

is given by

XH = XH̃ − {g, H̃}
{g, f}

Xf − {f, H̃}
{f, g}

Xg.

Proof. The submanifold V is contained in a level set of Hamiltonians f and

g. Thus df and dg vanish on V , so do Xf and Xg. It follows that we can use

Xf and Xg as normal directions of XH .

Now we writeXH asXH = XH̃+aXf+bXg for some functions a, b. Since

XH is defined on the level set of f and g, we must have XH(f) = 0 = XH(g).

We also have Xf (f) = 0 = Xg(g) from the definition. It follows that

0 = XH̃(f) + bXg(f) = {f, H̃}+ b{f, g},

0 = XH̃(g) + aXf (g) = {g, H̃}+ a{g, f}.

Substituting a, b into the first equation yields the result.

Remark 2.3.9. The formula of Proposition 2.3.8 can be generalized to the

case of any 2k-functions, say V = f−1
1 (c1) ∩ · · · ∩ f−1

2k (c2k). Following the
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same strategy, write XH = XH̃ +
∑
aiXfi and put fj repeatedly, we get

0 = {fj , H̃}+
2k∑
i=1

ai{fj , fi}, 1 ≤ j ≤ 2k.

The equation is linear with respect to ai, and can be solved under some

non-degeneracy assumptions.

2.3.3 Hamiltonian Actions

We refer to [Sep07] and [Hal15] for the basic notions of Lie groups and Lie

algebras. Let (M,ω) be a symplectic manifold, G be a Lie group acting on

M and g be its Lie algebra. Then for any element ξ ∈ g, we get a path

exp(tξ) in G, which can be considered as a path of diffeomorphisms of M .

We define the vector field Xξ on M by

Xξ(q) =
d

dt
exp(tξ) · q.

If we require the action of G to be symplectic, which means that we have

a group homomorphism

Φ : G→ Symp(M)

where Symp(M) is the group of symplectomorphisms of M , then the vector

field Xξ is a symplectic vector field. We further assume that each Xξ is a

Hamiltonian vector field, so there exists Hξ such that iXξ
ω = dHξ for each

ξ ∈ g. In this case, we have a map

ϕ : g → C∞(M).

The action is called Hamiltonian if ϕ is a Lie algebra homomorphism,

which means that H{ξ,η} = {Hξ, Hη}.

Example 2.3.10. Let SO(3) act on T ∗R3 ≃ R3 × R3 by

A · (x, y) = (Ax,Ay).
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Since AtA = Id, the action is symplectic. Consider the corresponding Lie

algebra so(3) consists of skew-symmetric matrices. For ξ ∈ so(3), we define

a Hamiltonian by

Hξ(x, y) = ytξx.

The Hamiltonian equation is as follows.

ẋ =
∂

∂y
Hξ = ξx

ẏ = − ∂

∂x
Hξ = −(ytξ)t = −ξty = ξy.

Solving this equation by taking the exponential, we can recover the SO(3)-

action which was described above. In short, the SO(3)-action is Hamiltonian.

An important consequence of this definition is a celebrated theorem of

Noether, relating symmetry and invariance of a Hamiltonian system.

Theorem 2.3.11 (Noether). Let (M,ω) be a symplectic manifold and G

act on M Hamiltonianly. Let H : M → R be a Hamiltonian which is G-

invariant, which means H(x) = H(g ·x) for any g ∈ G. Then for any ξ ∈ g,

{H,Hξ} = 0.

Proof. Since H is G-invariant, we have {H,Hξ} = XHξ
(H) = 0.

There is a notion called the moment map which generalizes the Hamil-

tonian action. We refer to [MS17] for a detailed discussion of this topic.

2.3.4 Geodesic Flow as a Hamiltonian Flow

Let (M, g) be a complete Riemannian manifold. We defined a geodesic vector

field X and a geodesic flow φ of (M, g) in Section 2.1.1. The metric g on

TM induces the dual metric g∗ on T ∗M by the natural pairing, and we can

define a (co-)geodesic flow and a (co-)geodesic vector field on T ∗M .

The following description of geodesic flow as a Hamiltonian flow is based

on [FvK18] Theorem 2.3.1. Let q = q(t) be a geodesic and denote q̇ = v. We

introduce the dual coordinate on T ∗M ,

pi = gijv
j , vi = gijpj .
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Lemma 2.3.12. The equation of geodesic q on T ∗M is

ṗi +
1

2
gjk,i pjpk = 0

where q̇i = gijpj.

Proof. Using the formula for Christoffel symbol, the geodesic equation

v̇a + Γa
bcv

bvc = 0

is transformed into the following.

∂t(g
aipi) +

1

2
gai(gib,c + gci,b − gbc,i)g

bjpjg
ckpk = 0

Differentiating the identity gijgjk = δik, we have gij,l gjk + gijgjk,l = 0 for any

l. It follows that

gaigib,cg
bjgckpjpk = −gai,c gibgbjgckpjpk = −gai,c δ

j
i g

ckpjpk = −gaj,c gckpjpk,

gaigci,bg
bjgckpjpk = −gai,b gcigckgbjpjpk = −gai,b δki gbjpjpk = −gak,b gbjpjpk

−gaigbc,igbjgckpjpk = gbj,i gbcg
aigckpjpk = gbj,i g

aiδkb pjpk = gjk,i g
aipjpk

We get the formula

Γa
bcv

bvc = −gaj,b g
bkpjpk +

1

2
gaigjk,i pjpk.

Also, we have

∂t(g
aipi) = gaiṗi + gai,b v

bpi = gaiṗi + gaj,b g
bkpjpk

To sum up, the geodesic equation has the form

gaiṗi +
1

2
gaigjk,i pjpk = 0.

Cancelling gai gives us the desired result.

Proposition 2.3.13. The geodesic vector field on T ∗M is a Hamiltonian
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vector field with Hamiltonian

H(q, p) :=
1

2
||p||2g∗ .

where T ∗M is equipped with a canonical symplectic form ω =
∑
dpi ∧ dqi

Proof. We can write the Hamiltonian given in the statement as

H(q, p) =
1

2
(gjkpjpk − 1).

By direct computation we have

dH =
1

2
gjk,i pjpkdq

i + gijpjdpi.

The Hamiltonian vector field is

XH = −1

2
gjk,i pjpk∂pi + gijpj∂qi ,

which is the geodesic vector field given in Lemma 2.3.12.

Note 2.3.14. Notice that Proposition 2.3.13 can be regarded as a general-

ization of a fact that motion of free particle in the Euclidean space can be

described by a Hamiltonian flow of kinetic energy, which was mentioned in

the end of Example 2.3.1.

Corollary 2.3.15. Let M be a Riemannian manifold. The geodesic vector

field is Reeb vector field of unit cotangent bundle ST ∗M with respect to the

contact form pdq.

Proof. Note that X = p∂p is transversal to T ∗
≤1M = H−1(1/2), and iXω =

pdq is a Liouville form. Thus we can apply Proposition 2.3.4 to see that the

Hamiltonian vector field XH is parallel to the Reeb vector field on ST ∗M .

Moreover, XH is exactly the Reeb vector field if and only if iXH
λ = |p| = 1,

which is the case of unit cotangent bundle.

Example 2.3.16. We’ve found the formula for the metric on the sphere

under the stereographic projection in Example 2.1.8. We can write out the
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Hamiltonian which defines the geodesic flow on Sn,

H(q, p) =
1

2
g(p, p) =

2

(1 + |q|2)2
|p|2.

We also note the Hamiltonian for the geodesic flow on T ∗Sn. The stereo-

graphic projection Sn → Rn can be extended to the cotangent bundles by

formula
Φ : T ∗Sn → T ∗Rn

(x, y) 7→
(

x⃗

1− x0
, (1− x0)y⃗ + y0x⃗

)
.

The formula for the cotangent coordinates can be derived by preservation

of the canonical 1-form ydx = pdq. We require the product of the lengths of

dual vectors to be 1, and it follows that the metric of cotangent bundle of

Sn under the stereographic projection can be written as

gij =
(1 + |q|2)2

4
δij .

It follows that the Hamiltonian of the geodesic flow is

H(q, p) =
1

2

(
1

2
(1 + |q|2)|p|

)2

.

2.4 Global Hypersurfaces of Section

In this section, we introduce the notion of global hypersurfaces of section

and open book decompositions, which will be a main topic of Chapter 3. We

refer to [FvK18] and [MvK22b] for the general discussion.

2.4.1 Global Hypersurfaces of Section

Let Y be a closed manifold, and X be a non-vanishing vector field on Y . A

global hypersurface of section of X, or of its flow FlX , is an embedded

submanifold P ⊂ Y of codimension 1 with (possibly empty) boundary ∂P =

B such that

1. the vector field X is transverse to the interior P̊ of P ,
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2. the boundary B is X-invariant. In other words, X is tangent to B.

3. for each point q in Y , there exist positive numbers t+, t− such that

FlXt+(q), F l
X
−t−(q) ∈ P.

If only the first two condition hold, we call P a (local) hypersurface of

section. If P is a global hypersurface of section, we can define the (first)

return time τp for each p ∈ P̊ by

τp = min{t > 0 : FlXt (p) ∈ P}

and the (first) return map by Ψ(p) = FlXτp(p). The return map is a dif-

feomorphism.

Let dimW = n + 1. If there exists a global hypersurface of section of

(W,X), we can understand many features of the dynamics of vector field X,

or equivalently time-dependent diffeomorphism FlXt of (n+ 1)-dimensional

manifold M by understanding the dynamics of diffeomorphism Ψ of n-

dimensional manifold P . For example, the periodic orbit of X corresponds

to the fixed point or periodic point of Ψ.

Example 2.4.1 (Birkhoff annulus). The Birkhoff annulus, defined by Birkhoff

[Bir13], is one of the oldest examples of the global hypersurface of section.

Let S be a 2-sphere with positive curvature. It’s known that there exists at

least one closed geodesic γ on S, which we call an equator. Let ν be a unit

normal vector field along γ. We define

P = {(q, p) ∈ T ∗S2 : q ∈ γ, g(νq, p) ≥ 0} ≃ S1 × [0, π].

The codimension 1 submanifold P is called the Birkhoff annulus, and is

known to be a global hypersurface of section. This fact leads to the proof of

the Poincaré’s last geometric theorem.

Example 2.4.2. Consider the unit cotangent bundle of round sphere STSn

as a subset of T ∗Rn+1. Let X = Xg be the unit geodesic vector field. Using
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the coordinates (x, y) = (x0, · · · , xn, y0, · · · , yn) ∈ T ∗Rn, we can write

ST ∗Sn =
{
(x, y) : |x|2 = 1, |y|2 = 1, ⟨x, y⟩ = 0

}
Consider the submanifold

P = {(x, y) ∈ ST ∗Sn : x0 = 0, y0 ≥ 0} ,

which is the set of upward directions on the equator. We claim that P is a

global hypersurface of section of X.

1. The geodesic with initial condition x0 = 0 and y0 > 0 leaves P , which

means that X is transverse to P .

2. The boundary is the unit cotangent bundle of the equator Sn−1, which

corresponds to x0 = 0. This is totally geodesic, as we’ve seen in Ex-

ample 2.1.12, which means that the boundary is X-invariant.

3. A geodesic on Sn is a great circle, as we’ve seen in Example 2.1.8,

which means every geodesic eventually touches P .

Therefore P is a global hypersurface of section of X. We can easily see that

the return map is the identity.

Example 2.4.3. Let M be an n-torus, defined by

M = {(z1, · · · , zn) ∈ Cn : |zj | = 1}

and equipped with the standard metric. Let N = {zn = 1}, then N is

a totally geodesic submanifold. Let’s identify ST ∗M with M × Sn−1 and

consider a codimension 1 submanifold

P = {(z, w) ∈ ST ∗M : z ∈ N, wn ≥ 0} .

If (z, w) ∈ P̊ , we have wn > 0, so the geodesic with the initial condition

(z, w) escapes from P̊ . Also, since ∂P = ST ∗N and N is totally geodesic, the

geodesic vector field is tangent to ∂P . It follows that P is a local hypersurface

of section of X.
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However, P is not a global hypersurface of section. To see this, consider

the geodesic with initial condition γ(0) = (1, · · · , 1,−1), γ̇(0) = (1, 0, · · · , 0).
Then we have

γ(t) = (eit, 1, · · · , 1,−1)

so γ never touches P , which means that the last condition is not satisfied.

2.4.2 Open Book Decompositions

An open book decomposition on a closed manifold Y is a pair (B, π) of

a codimension 2 closed submanifold B and a map π from Y \ B to S1 ⊂ C
which satisfies the following.

1. The normal bundle of B is trivial. We call B the binding. We fix the

trivialization of tubular neighborhood ξ : B ×D2 → ν(B).

2. The map π is a fiber bundle such that (π ◦ξ)(b; r, θ) = eiθ on ν(B)\B,

where (r, θ) is a polar coordinate on D2. We call the closure of each

fiber π−1(eiθ) = Pθ the page. Note that ∂Pθ = B for any θ.

If X is transverse to each page Pθ and tangent to B, then we say X is

adapted to (B, π).

Lemma 2.4.4. Let Y be a closed manifold, B ⊂ Y be a codimension 2

closed submanifold, X be a vector field on Y , and π be a map from Y \B to

S1. Assume that

1. For any p ∈ Y , dpπ(X) > 0,

2. There exists a trivial neighborhood ν(B) ≃ B × D2 of B and with

respect to the polar coordinate of D2, π(b; r, θ) = eiθ,

3. X is tangent to B.

Then (B, π) is an open book decomposition of Y , which X is adapted to.

Proof. By the first condition, π is a submersion. We can remove an open

tubular neighborhood ν(B) of B on which the second condition holds, then

π|Y \ν(B) is still a submersion. In particular, the second condition guarantees

33



CHAPTER 2. PRELIMINARIES

that π|∂ν(B) is a submersion. Since π|Y \ν(B) is proper, we can apply the

Ehresmann fibration theorem and conclude that π defines a fiber bundle.

With (2), we can see that (B, π) is an open book decomposition on Y .

Since dπ(X) ̸= 0, X cannot be tangent to the level sets of π. This means

that X is transverse to each page. With (3), we can see that X is adapted

to (B, π).

If a vector field X is adapted to (B, π), then each page Pθ = π−1(eiθ)

can be regarded as a candidate for the global hypersurface of section. There

might exist an orbit of X which does not return to the page in a finite time.

Such an orbit should be asymptotic to the boundary as t becomes large. A

discussion about a case of dimension 3 can be found in [HWZ98].

2.4.3 Global Hypersection of Sections of Reeb Flow

The system of our interest to find a global hypersurface of section and open

book decomposition is a case of Hamiltonian flow and the Reeb flow. The

relation of those two systems were revealed in Proposition 2.3.4. If we say P

is a global hypersurface of section or (B, π) is an open book decomposition

of a contact manifold (Y, kerα), we assume P is a global hypersurface of

section for the Reeb vector field R and (B, π) is adapted to the R unless

otherwise mentioned.

Lemma 2.4.5. Let (Y, ξ = kerα) be a contact manifold. Assume that there

exists a global hypersurface of section P on Y . Then,

1. The interior of P is a symplectic manifold with a symplectic form dα.

2. The binding (B, ξB = ξ|TB) is a contact submanifold of (Y, ξ).

3. The return map Ψ satisfies Ψ∗α− α = dτ where τ is the return time.

In particular, Ψ is an exact symplectomorphism.

Proof. For the first statement, let dimY = 2n + 1. Since Y is contact,

α∧dαn never vanishes. Since P̊ is transverse to R, we can take a local frame

(X1, · · · , X2n) of P̊ such that (R,X1, · · · , X2n) is a local frame of Y , and

α ∧ dαn(R,X1, · · · , X2n) = α(R)dαn(X1, · · · , X2n) ̸= 0.

34



CHAPTER 2. PRELIMINARIES

It means that dα is a non-degenerate closed 2-form on P̊ , so it’s a sym-

plectic form. For the second statement, we can assume that (X2n−1, X2n)

is the normal frame of B with respect to Y , since R is tangent to B. Then

(X1, · · · , X2n−2) is the basis of ξ|TB and we have

α∧dαn−1(R,X1, · · · , X2n−2) = α(R)dαn(X1, · · · , X2n)/dα(X2n−1, X2n) ̸= 0.

Thus (B, ξB) is a contact manifold.

The third statement is a generalization of the well-known fact in dimen-

sion 3, which can be found, for example, in [ABHSa17], [FvK18] or [MvK22b]

Lemma 5.4. We have FlRτp(p) = Ψ(p). Differentiating both sides and plugging

in a vector field X, we have

dF lRτp(p)X + (dτp(X))R = dpΨ(X).

Since FlR preserves α, we have that

Ψ∗α(X) = α(dΨ(X)) = (FlR)∗α(X) + α(R)dτ(X) = α(X) + dτ(X).

By differentiating both sides, we get Ψ∗dα = dα, which means that Ψ is a

symplectomorphism.

We also note some boundary behaviors. Let (B, π) be an open book

decomposition of (Y, kerα) and P be a page. Since (P̊ , dα) is a symplectic

manifold, it’s natural to expect that (P, dα) is a Liouville domain. However,

the following proposition says this never happens.

Proposition 2.4.6. Let (Y, kerα) be a contact manifold and (B, π) be its

open book decomposition. Then dα degenerates on the boundary of a page P .

Proof. The Reeb vector field R is tangent to ∂P , which means in particular

Rb ∈ TbP for b ∈ ∂P . However, iRdα = 0 which means that dα degenerates

on the boundary.

Assume that the contact manifold (Y, kerα) is given by a regular level

set of a Hamiltonian H defined on a symplectic manifold (M,ω), and (B, π)
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be an open book decomposition of (Y, kerα). Let γ be a contractible Reeb

orbit contained in B, and fix a symplectic normalization of ξ = kerα along

γ. We also take a symplectic normal frame (N1, N2) of normal bundle νB

of B in Y along γ. [MvK22b] Section 8 says that there exists a Riemannian

metric which decomposes the Hessian of H into block diagonal matrices.

Precisely, we can write

Hess(H) =

(
Sξ 0

0 Sν

)

where Sξ ∈ ξ∗⊗ ξ∗ and Sν ∈ ν∗B ⊗ ν∗B. We call Sν a normal Hessian. Prac-

tically, the normal Hessian can be computed by computing the linearized

flow along the orbit contained in B.

Proposition 2.4.7 ([MvK22b]). Under the above setting, we further assume

that the return time of P is bounded. If Sν is positive definite, then the return

map Ψ extends to the boundary smoothly.

Proof. See [MvK22b] Proposition 8.2.

2.5 Floer Homology

In this section, we introduce various versions of Floer homology, includ-

ing symplectic homology and S1-equivariant symplectic homology. We also

present the Morse-Bott spectral sequence, a useful tool for computing sym-

plectic homology. For further details, we refer the reader to [AD14], [Abo15],

[KvK16], and [Gut18].

2.5.1 Conley-Zehnder Index

Let Q be a quadratic form defined on the vector space V . In an appropri-

ate basis, Q can be represented as a diagonal matrix with diagonal entries

consisting only of 1, 0 and −1. Let n+, n0 and n− denote the counts of 1 ,0

and −1 respectively. The signature of Q is defined as

Sign(Q) = n+ − n−
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Let Ψ : [0, τ ] → Sp(2n) be a path of symplectic matrices with Ψ(0) = Id.

A point t ∈ [0, τ ] is called a crossing if det(Ψ(t) − Id) = 0. The crossing

form is a quadratic form defined on the vector space Vt = ker(Ψ(t)− Id) as

follows

Qt(v, v) = ω(v, Ψ̇(t)v),

where ω is a symplectic form on Vt. Using a symplectic basis {v1, w1, · · · , vn, wn}
as described in Example 2.2.6, the crossing form can be expressed as

Qt = Ωψ̇(t) = diag

((
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

))
ψ̇(t)

Assuming the crossings are isolated, the Robbin-Salamon index (introduced

in [RS93]) for Ψ is given by

µRS(ψ) =
1

2
Sign(Q0) +

∑
t

Sign(Qt) +
1

2
Sign(Qτ )

where
∑

t is the sum over all crossings.

The Robbin-Salamon index has the following key properties.

Theorem 2.5.1. Let Ψi : [0, τ ] → Sp(2n) be paths. The Robbin-Salamon

index µRS satisfies

1. (Homotopy Invariance) If Ψ1 and Ψ2 are homotopic,

µRS(Ψ1) = µRS(Ψ2).

2. (Additivity) Let Ψ3(t) = Ψ2(t)Ψ1(t) be the pointwise produce of Ψ1

and a loop Ψ2. Then,

µRS(Ψ3) = µRS(Ψ2) + µRS(Ψ1).

Proof. For proofs and additional details, see [SZ92], [RS93], or [Sal99]. Note

that the Robbin-Salamon index of a loop may differ from the Maslov index

by a factor of two, depending on conventions.
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Let (Y, kerα) be a contact manifold, R be the Reeb vector field and

γ : [0, τ ] → Y be a periodic Reeb orbit. Assume that γ is contractible, so

there exists a disk Dγ such that ∂Dγ = γ. Choosing a trivialization of the

contact structure A : γ∗ξ → [0, τ ] × R2n, we obtain a path of symplectic

matrices

Ψ(t) = A(t)dF lRt |ξA(0)−1 ∈ Sp(2n).

The Conley-Zehnder index of γ is defined as

µCZ(γ) = µRS(Ψ).

By the homotopy invariance property in Theorem 2.5.1, this definition does

not depend on the choice of trivialization.

Note 2.5.2. In the case of geodesic flow, we can assign a Morse index to

closed geodesics. From the perspective of Morse theory, closed geodesics are

critical points of the energy functional on the loop space of the manifold.

Details of this approach can be found in [Mil63].

The linearized geodesic flow coincides with the linearized Hamiltonian

flow in this case and can be described using Jacobi fields. Consequently, the

Morse index of a closed geodesic is equivalent to the Conley-Zehnder index

of the same geodesic, viewed as a closed Reeb orbit.

Let H : (W,ω) → R be a Hamiltonian on a symplectic manifold and

let Y = H−1(c) be a regular level set of contact type with Liouville vector

field X. Let γ : [0, τ ] → Y be a Reeb orbit of (Y, ker iXω). Since XH is

parallel to R, γ can be regarded as a Hamiltonian orbit with a different

parametrization. Let γ̃(s(t)) = γ(t), where s(0) = 0, s(τ) = σ. Denote the

initial and final points as γ(0) = g̃(0) = q0 and γ(τ) = γ̃(σ) = q1. Linearized

flows satisfy

dF lXH
σ : Tq0W → Tq1W

dFlRτ : Tq0Y → Tq1Y.

Lemma 2.5.3. Let X be a vector field on a manifold M , and s : M → R.
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Define ψ(q) = FlXs(q)(q). Then,

dψ(q)ξ = dF lXs(q)(q)ξ + (ds(q)ξ)X.

Proof. See Chapter 9 of [FvK18].

Let N be a normal vector to Y in W . Then we have

TqW = ⟨Nq⟩ ⊕ TqY = ⟨Nq⟩ ⊕ ⟨Rq⟩ ⊕ ξq.

Consider the map given by quotient

dF lXH
σ : Tq0Y → Tq1Y.

From Lemma 2.5.3, the difference between dF lXH
σ and dF lRτ is parallel to

R. This implies that, after quotienting by ⟨R⟩, the two maps

dF lXH
σ : ξq0 → ξq1

dF lRτ : ξq0 → ξq1

are identical. We can summarize this result as follows.

Proposition 2.5.4. Let H : (M,ω) → R be a Hamiltonian, and let Y =

H−1(c) be a regular level set of contact type. Let γ be a Reeb orbit, and let

γ̃(s(t)) = γ(t) be its corresponding Hamiltonian orbit. Then,

dF lRt |ξ = dF lXH

s(t) |ξ

In particular, the Conley-Zehnder index can be computed using the linearized

Hamiltonian flow.

2.5.2 Floer Homology

Floer homology, introduced by Floer [Flo89], is an important invariant of

symplectic manifolds. The chain complex is generated by periodic Hamil-

tonian orbits, while the differential counts Floer cylinders. This can be re-

garded as a Morse homology defined on the loop space. For aspherical closed
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symplectic manifolds, Floer homology is known to be isomorphic to singu-

lar homology, a result that provides a proof of Arnold’s conjecture. In this

subsection, we briefly introduce Floer homology and symplectic homology

without delving into detailed constructions. For further details, see [AD14].

et (W,ω) be a closed symplectic manifold such that π2(W ) = 0, and let

H : W × S1 → R be a time-dependent Hamiltonian. Let J be an almost

complex structure on W , compatible with ω. For a contractible loop γ in

W , let D be a capping disk of γ, meaning D : D2 → W with D|∂D2 = γ.

We define the action functional on the loop space ΛW of W by

A(γ) = −
∫
D
u∗ω +

∫ 1

0
Ht(γ(t))dt.

The critical points of A are 1-periodic Hamiltonian orbits of H. We call an

orbit γ is nondegenerate if

det(Id− dγ(0)Fl
XH
1 ) ̸= 0.

Note that γ is nondegenerate as a Hamiltonian orbit if and only if it is

nondegenerate as a critical point of A in the Morse-theoretic sense. We

further assume that every Hamiltonian orbit of H is nondegenerate. This

condition can be generically achieved by perturbing the Hamiltonian.

We define the Floer chain group as a graded Z2-vector space

CF∗(W,H, J) =
⊕

γ∈Crit(A)

Z2 · γ

where the degree of γ is given by its Conley-Zehnder index. Let γ+, γ− be

1-periodic Hamiltonian orbits. Define the moduli space of Floer cylinders,

M(γ−, γ+, H, J) =

{
u : S1 × R →W :

us + J(ut −XHt) = 0,

lims→±∞ u(s,−) = γ±(−)

}
.

For generic J , it is well-known that M(γ−, γ+, H, J) is smooth manifold of
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dimension

dimM(γ−, γ+, H, J) = µCZ(γ+)− µCZ(γ−) + 1.

The differential on CF∗(W,H, J) is defined by

∂F∗ (γ+) =
∑

µCZ(γ−)=∗−1

#M(γ−, γ+, H, J) · γ−

Using a gluing argument, one can show that (∂F )2 = 0. Hence, (CF ∗, ∂F )

forms a chain complex, which defines the Floer homology HF∗(W,H, J).

It is well-known that HF∗(W,H, J) is independent of the choice of H and

J .

The invariance of Floer homology is shown using a continuation map,

which is a map from HF∗(W,H1, J1) to HF∗(W,H2, J2). In particular, we

have the following result.

Theorem 2.5.5. HF∗(W ) ≃ HMorse
∗ (W,Z2).

Idea of the Proof. Take H small enough so that every Hamiltonian 1-orbit

is a critical point of H. In particular, we can take H can be chosen as a

Morse function. Then, there is a correspondence between generators, and

one can show a correspondence between differentials.

2.5.3 Symplectic Homology

For open symplectic manifolds, one can use symplectic homology, as defined

in [FH94], [CFH95]. We consider Liouville domains with Hamiltonians that

behave well on the boundary, so periodic Reeb orbits on the boundary of

the manifold also serve as generators. A celebrated result, Viterbo’s theorem

[AS06], [Abo15], states that in the case of a cotangent bundle T ∗M , the

symplectic homology is isomorphic to the homology of the free loop space

of M . See [Abo15] for details.

Consider a Liouville domain (W,dλ) with a Liouville vector field X. Let

α = λ|∂W be the contact form on ∂W . The flow ofX provides a trivialization

41



CHAPTER 2. PRELIMINARIES

of the collar neighborhood of ∂W given by

ΦX : (0, 1]× ∂W →W

(r, q) 7→ FlXlog r(q).

Note that ΦX identifies rα with λ. We can complete (W,dλ) by attaching a

symplectization of ∂W , defined as

Ŵ =W ⊔ΦX
(0,∞)× ∂W

equipped with the Liouville form λ̂, where λ̂|W = λ and λ̂|(0,∞)×∂W = rα.

We impose the following conditions on the Hamiltonian H and the almost

complex structure J on S1 × Ŵ :

1. The Hamiltonian H is linear at infinity. Specifically, there exists a

number τ > 0, distinct from the period of any closed Reeb orbit of

(∂W, kerα), such that outside a compact set,

H(t, x, r) = τr − C

for some constant C. Additionally, we assume H < 0 inside W .

2. J is cylindrical at infinity. This means that J preserves the contact

form on each ∂W × {r}, satisfies JX = R where R is the Reeb vector

field, and J is invariant under translation in the R-component.

With these conditions, we can define Floer homology HF∗(H,J). It is well-

known that this group is independent of the choice of a cylindrical almost

complex structure, so we write it as HF∗(H). If the slope of H is τ , the

chain complex CF∗(H) is generated by the interior Hamiltonian orbits and

closed Reeb orbits on ∂W with periods less than τ .

We define a partial ordering on Hamiltonians that are linear at infinity

by

H1 ≺ H2 if and only if H1(t, x) ≤ H2(t, x) for any (t, x) ∈ S1 × Ŵ .

If H1 ≺ H2, we can define a continuation map. With this, we define sym-
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plectic homology by

SH∗(W,λ) = lim−→
(H,≺)

HF∗(H)

We also define the filtered version of symplectic homology SHa
∗ (W,λ).

The filtration is given by the action of the orbit, which equals the period in

the case of a Reeb orbit. The homology SHa
∗ (W,λ) consists of Reeb orbits

with periods less than a, and is isomorphic to the Floer homology HF∗(H),

where H is a Hamiltonian with slope a. In particular, take ε > 0 small

enough such that ε is less than the shortest period of Reeb orbits on ∂W .

Then SHε
∗(W,λ) consists only of interior Hamiltonian orbits as generators,

giving

SHε
∗(W,λ) ≃ H∗(W,∂W ).

We define the +-part of symplectic homology by

SH+
∗ (W,λ) = SH∗(W,λ)/SH

ε
∗(W,λ).

This homology group consists only of Reeb orbits as generators.

Theorem 2.5.6 (Viterbo’s Theorem). The symplectic homology of the cotan-

gent bundle of a manifold M is isomorphic to the singular homology of the

free loop space ΛM .

Proof. See [AS06] or [Abo15].

2.5.4 S1-equivariant Symplectic Homology

The S1-equivariant version of symplectic homology was introduced in [Vit99],

[Sei08], and further developed in [BO17]. In contrast, S1-equivariant sym-

plectic homology, these are identified as a single generator. In this sense,

S1-equivariant symplectic homology simplifies the chain complex and pro-

vides more direct intuition. For details, refer to the lecture notes of Gutt

[Gut18].

Let (W,ω) be a Liouville domain, and let Ŵ be its completion. Define
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the Morse function fN : CPN → R by

fN ([w0 : · · · : wn]) =

∑
j j|wj |2∑
|wj |2

.

This function has (N + 1)-critical points with degree 0, 2, · · · , 2N . Let f̃N :

S2N+1 → R be the lift of fN via S1-fibration S2N+1 → CPN . For each

critical value of f̃N , there exists an S1-family of critical points of f̃N .

Now consider S1-equivariant parametrized Hamiltonian

H : S1 × Ŵ × S2N+1 → R

such that H(θ, x, z) = H(θ + φ, x, φ · z). Assume the following:

1. The Hamiltonian H is linear at infinity.

2. If z ∈ Crit(f̃N ), then the 1-periodic orbits of XHz are nondegenerate.

3. Along the negative gradient flow of f̃N , H is nondecreasing.

Let P(H,N) denote the set of pairs (γ, z), where z ∈ Crit(f̃N ) and γ is a

1-periodic orbit of Hz. There is a free S1-action on P(H,N) defined by

φ · (γ, z) = (γ(· − φ), φz).

We denote the S1-orbit of p = (γ, z) in P(H,N) by Sp. Let J = Jθ
z be an S1-

equivariant generic almost complex structure parametrized by S1 × S2N+1.

Let p± be elements of P(H,N). The moduli space of Floer trajectories

is defined as

M(Sp+ , Sp−) =


η : R → S2N+1

u : R× S1 → Ŵ
:

η̇ +∇f̃N (η) = 0

us + Jθ
η(s)(uθ −XHθ

η(s)
) = 0

lims→±∞(η(s), u(s,−)) ∈ Sγ±,z±


There exists a natural R- and S1-action defined on M, and we denote the

quotient space by MS1
. For p = (γ, z), let |Sp| = Ind(z) + µCZ(γ). For a
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generic J , MS1
is a smooth manifold with dimension

dimMS1
(Sp+ , Sp−) = |Sp+ | − |Sp− | − 1.

where Ind(z) is the Morse index z as a critical point of fN . We define the

chain complex CFS1,N
∗ (H,J) as the Z2-vector space generated by Sp’s, with

differential ∂S
1
given by

∂S
1
(Sp+) =

∑
|Sp− |=|Sp+ |+1

#MS1
(Sp+ , Sp−)Sp− .

It is known that (∂S
1
)2 = 0, allowing us to define HFS1,N

∗ .

There exists a natural inclusion of S2N+1 ⊂ CN+1 into S2N+3 ⊂ CN+2

for any N , given by z 7→ (z, 0). If H is defined on S2N+3, we can pull-back H

to S2N+1. This allows the definition of a partial ordering on the set of pairs

(H,N) of an appropriate Hamiltonian H and a natural number N , as in the

symplectic homology. We define S1-equivariant symplectic homology

as

SHS1

∗ (W,λ) = lim−→
(H,N)

HFS1,N
∗ (H).

2.5.5 Morse-Bott Spectral Sequence

One way to compute the symplectic homology of spaces with sufficient sym-

metry is by using the Morse-Bott spectral sequence. If periodic orbits are

degenerate and form a submanifold, we can use local Floer homology to

construct a spectral sequence. For details, see [KvK16].

Let (W,dλ) be a Liouville domain and H be an autonomous Hamiltonian

defined on W . Consider the critical manifold of 1-periodic orbits of XH ,

C = {x ∈W : FlXH
1 (x) = x}.

We assume that C is compact manifold without boundary. Let Σ be a con-

nected component of C. We say Σ is of Morse-Bott type if the linearized
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return map restricted to the normal bundle of Σ is nondegnerate, i.e.,

det
(
dxFl

XH
1 |ν(Σ) − Id|ν(Σ)

)
̸= 0.

Assume H is Morse-Bott, meaning every component of C is of Morse-Bott

type. By perturbing H near Σ using a Morse function on Σ, we can define

local Floer homology HF loc
∗ (Σ) of Σ. Under certain assumptions outlined

in Proposition 8.4 of [KvK16], which are satisfied in our case, there is an

isomorphism

HF loc
∗+sh(Σ)(Σ, H, J) ≃ HMorse

∗ (Σ,Z2),

sh(Σ) = µRS(Σ)−
1

2
dimΣ/S1

where sh(Σ) is the shift term. Using this, we can define the Morse-Bott

spectral sequence, where the filtration is given by the action functional.

Theorem 2.5.7 ([KvK16]). Under appropriate assumptions,

1. There exists a spectral sequence converging to SH(W ), with the E1-

page given by

E1
pq(SH) =


⊕

Σ∈C Hp+q−sh(Σ)(Σ,Z2) p > 0

Hq+n(W,∂W,Z2) p = 0

0 p < 0

2. There exists a spectral sequence converging to SH+(W ), with the E1-

page given by

E1
pq(SH) =

{ ⊕
Σ∈C Hp+q−sh(Σ)(Σ,Z2) p > 0

0 p ≤ 0

3. There exists a spectral sequence converging to SHS1
(W ), with the E1-
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page given by

E1
pq(SH) =


⊕

Σ∈C H
S1

p+q−sh(Σ)(Σ,Z2) p > 0

HS1

q+n(W,∂W,Z2) p = 0

0 p < 0

4. There exists a spectral sequence converging to SHS1,+(W ), with the

E1-page given by

E1
pq(SH) =

{ ⊕
Σ∈C H

S1

p+q−sh(Σ)(Σ,Z2) p > 0

0 p ≤ 0
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Chapter 3

Existence of Global

Hypersurfaces of Section

In this chapter, we prove the existence of global hypersurfaces of section for

two cases. The first case is a certain type of Hamiltonian flow in T ∗Rn and

will be discussed in Section 3.1. This case includes the classical mechanical

Hamiltonian with a convex potential, particularly the harmonic oscillator

and the Hénon-Heiles system, as well as the contact ellipsoids.

The second case is the geodesic flow of a convex hypersurface contained

in Euclidean space and will be discussed in Section 3.2. This part is based

on joint work with Sunghae Cho [CL24]. This case includes the geodesic flow

on a hypersurface of revolution, which includes a specific type of ellipsoid.

In this case, we will compute the return map explicitly. Another example is

the spatial Kepler problem which will be discussed in Chapter 4.

3.1 Mechanical Hamiltonian Flow

We state the main theorem of this section.

Theorem 3.1.1. Let H : R2n → R be a symmetric mechanical Hamilto-

nian of a convex type, and c be a regular value. Then, there exists a global
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hypersurface of section

P =
{
(q, p) ∈ H−1(c) : q1 = 0, p1 ≥ 0

}
of the Hamiltonian flow XH . Furthermore, the return map extends smoothly

to the boundary.

The definition of a symmetric mechanical Hamiltonian of a convex type

will be introduced in the following section.

3.1.1 Mechanical Hamiltonian of Convex Type

Let R2n ≃ T ∗Rn be a Euclidean space equipped with the standard symplec-

tic form dp ∧ dq. Let H : R2n → R be a Hamiltonian of the form

H(q, p) =W (p) + V (q).

Let c be a regular value of H. We first assume the following:

(A0) For any p such that (q, p) ∈ H−1(c), p · ∇W > 0.

This condition implies that p · ∂p is transversal to H−1(c). Thus, it’s a

Liouville vector field and H−1(c) is a contact manifold with the contact

form pdq. Instead, we might take the condition q ·∇V > 0. In this case, q ·∂q
is transversal to H−1(c) and the contact form is −qdp.

Here is the symmetry condition of H.

(A1) There exists a reflection R along a hyperplane containing the origin in

Rn, such that V (q) = V (Rq) and W (p) =W (Rp).

After an appropriate Euclidean transformation, we can assume that the

reflection is given by

R(q1, q2, · · · , qn) = (−q1, q2, · · · , qn).

With this convention, we assume further:

(A2) ∂2q1V > 0, ∂2p1W > 0.
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The condition (A2) can be replaced by the following two assumptions,

1. q1∂q1V (q) > 0 and p1∂p1W (p) > 0 for any q1 ̸= 0.

2. ∂2q1V (0, q2, · · · , qn) > 0 and ∂2p1W (0, q2, · · · , qn) > 0.

Indeed, from (A1), we have ∂q1V (0, q⃗) = 0 for any q⃗. From (A2), we deduce

that ∂q1V > 0 if q1 > 0, and ∂q1V < 0 if q1 < 0. Thus, (A2) implies these

two conditions, which are sufficient to prove the theorem.

For given H and c, Hill’s regions are defined by

Hq
c = pr1(H

−1(c)) ⊂ Rn, Hp
c = pr2(H

−1(c)) ⊂ Rn,

where pr1(q, p) = q, pr2(q, p) = p. These regions represent the maximal set

of possible values for q and p at a given energy level c. We further assume

the following:

(A3) Hill’s regions Hq
c and Hp

c are compact.

If (A0), (A1), (A2) and (A3) are satisfied, we call H a symmetric me-

chanical Hamiltonian of convex type.

3.1.2 Proof of the Existence

We denote Y = H−1(c) for a regular value c. We have

XH = ∇W · ∂q −∇V · ∂p

where ∇V = (∂q1V, · · · , ∂qnV ) and ∇W = (∂p1W, · · · , ∂pnW ). We define

B = {(q, p) ∈ Y : q1 = p1 = 0} .

Lemma 3.1.2. The submanifold B ⊂ Y has a trivial normal bundle.

Proof. The global normal frame is given by ∂p1 , ∂q1 .

Lemma 3.1.3. Under assumption (A1), B ⊂ Y is tangent to XH .
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Proof. We have

XH |TB =
n∑

i=2

∂W

∂pi

∂

∂qi
−

n∑
i=2

∂V

∂qi

∂

∂pi

since (A1) implies that ∂q1V (q) = 0 and ∂p1W (p) = 0 on TB.

We define a fibration map by

π : Y \B → S1 ⊂ C

(q, p) 7→ q1 + ip1
|q1 + ip1|

.

The angular form is defined by

Θ = i · d log π =
p1dq1 − q1dp1

q21 + p21
=

θ

q21 + p21
.

Then we have

θ(XH) = p1∂p1W + q1∂q1V.

Lemma 3.1.4. If H is a symmetric mechanical Hamiltonian of a convex

type, there exists ε > 0 such that Θ(XH) > ε for any (q, p) ∈ Y \B.

Proof. First, from (A2) and (A3), there exists η1 > 0 such that ∂2q1V (0, q⃗) >

η1 for any (0, q⃗) ∈ pr1(B). From (A1), we have ∂q1V = 0 along B. So the

Taylor expansion of V with respect to q1 along B is given by

V (q1, q⃗) = V (0, q⃗) + ∂q1V (0, q⃗)q1 +
1

2
∂2q1V (0, q⃗)q21 +O(q31)

= V (0, q⃗) +
1

2
∂2q1V (0, q⃗)q21 +O(q31),

∂q1V (q1, q⃗) = ∂2q1V (0, q⃗)q1 +O(q21)

where q⃗ = (q2, · · · , qn). Take δ > 0 such that if |q1| < δ, then∣∣∣∣∂q1V (q1, q⃗)

q1
− ∂2q1V (0, q⃗)

∣∣∣∣ < η1
2
.
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Similarly, we can bound W , so it follows that if |p1|, |q1| < δ,

θ(XH) = p21
∂p1W

p1
+ q21

∂q1V

q1
>
η1
2
(p21 + q21)

Now by (A2) and (A3), there exists η2 > 0 such that if |q1| > δ,

∂q1V

q1
=

1

q21
· q1∂q1V > η2.

Again, we take a similar bound for W , and it follows that if |p1|, |q1| > δ,

θ(XH) = p1∂p1W + q1∂q1V > η2(p
2
1 + q21).

Take ε = min(η1/2, η2), and the result follows.

Theorem 3.1.5. π : Y \B → S1 defines an open book decomposition of Y ,

to which XH is adapted.

Proof. The three assumptions of Lemma 2.4.4 were proved in Lemma 3.1.4,

Lemma 3.1.2 and Lemma 3.1.3, so we can apply the lemma.

Theorem 3.1.6. Each page of the open book decomposition (B, π) given in

Theorem 3.1.5 is a global hypersurface of section.

Proof. We only need to demonstrate that the return time is bounded. It

suffices to show that there exists t ∈ R>0 such that π(FlXH
t (q, p)) = π(q, p).

From Lemma 3.1.4, we observe the existence of ε > 0 such that Θ(XH) > ε.

Thus, we have ∫ 2π/ε

0
i · d log π(XH) >

∫ 2π/ε

0
εdt > 2π.

By the intermediate value theorem, we can conclude that there exists a

positive number τ < 2π/ε such that
∫ τ
0 i · d log π(XH) = 2π, which means

that π(FlXH
τ (q, p)) = π(q, p). It means that τ is a bounded positive finite

return time for (q, p). The boundedness of the negative return time can be

demonstrated similarly.
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3.1.3 Extension of Return Map

To complete the proof of Theorem 3.1.1, we consider the normal Hessian.

By differentiating the Hamiltonian equation, the linearized flow is given by

L =

(
0 −Hess(V )

Hess(W ) 0

)

with respect to the frame (∂p, ∂q). Under the normal frame (∂p1 , ∂q1), we

have

L =

(
0 −∂2q1V

∂2p1W 0

)
The normal Hessian is obtained as −JL, where J is the almost complex

structure defined on the symplectic normal bundle. Thus,

Sν =

(
∂2q1V 0

0 ∂2p1W

)
.

By (A2), Sν is positive definite, so we have the result.

Theorem 3.1.7. The return map of the global hypersurface of section given

in Theorem 3.1.6 extends smoothly to the boundary.

Proof. This follows from Proposition 2.4.7.

3.1.4 Examples

Example 3.1.8. Let H : R2n → R be given by

H(q, p) =
1

2
|p|2 + 1

2
k|q|2.

for k > 0. This is the Hamiltonian of the harmonic oscillator. We can

directly see that H is a mechanical Hamiltonian of a convex type, and apply

Theorem 3.1.1. Actually, V (q) = 1
2k|q|

2 is symmetric with respect to every

reflection along a hyperplane contains the origin. That is, for any nonzero
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vector ν and c > 0,

Pν =
{
(q, p) ∈ H−1(c) : ν · q = 0, ν · p ≥ 0

}
is a global hypersurface of section on H−1(c).

If we take ν = (1, 0, · · · , 0) and identify R2n ≃ Cn by (q, p) 7→ q+ ip, we

can see that H−1(c) is diffeomorphic to S2n−1, P is given by Im(z1) ≥ 0,

and the binding B = ∂P is the equator given by z1 = 0.

Example 3.1.9. Consider the Hamiltonian

H(q, p) =
∑

aip
2
i +

∑
biq

2
i

for ai, bi > 0. The level set is an ellipsoid. For any i and c > 0, we have the

global hypersurface of sections Pi, Qi for i = 1, · · · , n given by

Pi =
{
(q, p) ∈ H−1(c) : qi = 0, pi ≥ 0

}
Qi =

{
(q, p) ∈ H−1(c) : qi ≥ 0, pi = 0

}
Example 3.1.10. The Hénon–Heiles system is defined by the Hamilto-

nian

H(q, p) =
1

2
|p|2 + V (q) =

1

2
|p|2 + 1

2
|q|2 + (q21 + q22)q3 −

q33
3
.

This system was introduced by Hénon and Heiles [HH64] and describes the

galactic dynamics. It’s known that this system is not integrable, and is

chaotic. See [For91], [FLP+98a] and [FLP+98b] for details.

The level contour of the potential V is illustrated in Figure 3.11, and we

can see that the Hill’s region is compact for energy level c < 1/6. In particu-

lar, q3 > −1/2 if c < 1/6. We can see that V (q1, q2, q3) = V (−q1, q2, q3) and
∂2q1V = 1+2q3 > 0, so we can apply Theorem 3.1.1. The global hypersurface

of section is given by the planar problem,

P =
{
(q, p) ∈ H−1(c) : q1 = 0, p1 ≥ 0

}
.

1https://commons.wikimedia.org/wiki/File:Henon heiles potential.svg
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Figure 3.1: [Deb12] The level contour of the potential of the Hénon-Heiles
system. The horizontal axis corresponds to r =

√
q21 + q22 and the vertical

axis corresponds to q3.
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3.2 Geodesic Flow on Convex Hypersurfaces

We first state the main result of this section.

Theorem 3.2.1 ([CL24], Theorem 1.1.). Let M ⊂ Rn+1 be a locally sym-

metric convex hypersurface with fixed locus N . Then the geodesic flow on

ST ∗M admits a global hypersurface of section

P = {(x, y) ∈ ST ∗M : x ∈ N, ⟨y, νx⟩ ≥ 0} ,

where ν is a normal vector field of N with respect toM . Moreover, the return

map extends smoothly to the boundary of P .

A locally symmetric convex hypersurface will be defined in the following

section.

3.2.1 Geodesic Flows on Hypersurfaces

For simplicity, we denote x = (x0, x⃗) for points in Rn+1 and y = (y0, y⃗) for

vectors in TxRn+1. Let f : Rn+1 → R be a smooth function with 0 as a

regular value, and let M = f−1(0). We can embed T ∗M into T ∗Rn+1 as

T ∗M =
{
(x, y) ∈ T ∗Rn+1 : f(x) = 0, y · ∇f = 0

}
.

Here, we identify T ∗M to TM using the metric onM . Let H̃ = 1
2

(
||y||2 − 1

)
on T ∗Rn+1, and H = H̃|T ∗M . From Proposition 2.3.13, we can see that

H defines the geodesic flow on T ∗M with respect to the symplectic form

ω|T ∗M = dy ∧ dx|T ∗M .

Define f̃ , g : T ∗Rn+1 → R by

f̃(x, y) = f(x), g(x, y) = y · ∇f

so that T ∗M is the intersection f̃−1(0) ∩ g−1(0). Through straightforward

computation, we find

XH̃ = y · ∂x, Xf̃ = −∇f · ∂y, Xg = ∇f · ∂x −
∑
i,j

yjfij
∂

∂yi
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where ∂xif = fi and ∂xi∂xjf = fij . Using the formula for the Poisson bracket

from Lemma 2.3.6, we obtain

{f̃ , g} =
∑ ∂f

∂xj

∂g

∂yj
=
∑(

∂f

∂xj

)2

= ||∇f ||2,

{f̃ , H̃} =
∑ ∂f

∂xj

∂H̃

∂yj
=
∑ ∂f

∂xj
yj = y · ∇f = 0,

{g, H̃} =
∑ ∂g

∂xj

∂H̃

∂yj
=
∑
j

∂

∂xj

(∑
i

yi
∂f

∂xi

)
yj

=
∑
i,j

∂2f

∂xi∂xj
yiyj = Hess(f)(y, y).

To summarize, using Proposition 2.3.8, we have the following.

Theorem 3.2.2. Let f : Rn+1 → R, 0 be a regular value of f , and M =

f−1(0). Then, the geodesic vector field on T ∗M is given by

XH = y · ∂x −
Hess(f)x(y, y)

∥∇f(x)∥2
∇f · ∂y.

This formula can alternatively be derived by orthogonal projection.

3.2.2 Locally Symmetric Convex Hypersurfaces

Let f : Rn+1 → R be a function, and let M = f−1(0) be a regular level set.

Suppose N ⊂ M be a codimension 1 submanifold. We say M is a locally

symmetric convex hypersurface with fixed locus N if there exists a

reflection ρ : Rn+1 → Rn+1 that preserves a hyperplane Σ such that

1. The hypersurface N is contained in Σ. In other words, ρ|N = Id|N .

2. The reflection ρ can be regarded as a map defined on a tubular neigh-

borhood of N . That is, there exists a tubular neighborhood ν(N) of

N in M such that ρ(ν(N)) = ν(N).

3. (Convexity) The hypersurface M has positive sectional curvature.

For convenience, we assume that the reflection is given by ρ(x0, x⃗) = (−x0, x⃗).
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We now introduce equivalent conditions of f that correspond M being a

locally symmetric convex hypersurface. The equivalence of these conditions

will be verified in the remainder of this subsection.

(B1) For any (x0, x⃗) ∈M with |x0| small enough, f(x0, x⃗) = f(−x0, x⃗).

(B2) The Hessian of f is positive definite.

First, assume (B1). Define

N =M ∩ {x ∈M : x0 = 0} , ν(N) = {x ∈M : |x0| < ε} ,

where |x0| < ε satisfies (B1). Then we can see that M is locally symmetric

with fixed locus N under the reflection ρ(x0, x⃗) = (−x0, x⃗). The converse is

straightforward, so we can use (B1) as an equivalent condition.

Now consider the geometry of the cotangent bundle. We denote Y =

ST ∗M and B = ST ∗N . Note that B can be expressed as

B = {(x, y) ∈ ST ∗M : x0 = 0, y0 = 0} = ST ∗N.

Since the reflection of Euclidean space is an isomtery, we deduce from The-

orem 2.1.11 that N is a totally geodesic submanifold. Consequently, B is

tangent to the geodesic vector field. Furthermore, the normal bundle of B

is trivial, as shown in the following lemma.

Lemma 3.2.3. Let M be a Riemannian manifold diffeomorphic to an n-

sphere, and let N ⊂M be a codimension 1 closed submanifold. Then ST ∗N

has a trivial normal bundle in ST ∗M .

Proof. We first show that the normal bundle ν(N) of N is trivial, which

is equivalent to the orientability of N . Suppose N is not orientable. Then,

for any section s of ν(N) which meets the zero section transversely, there

exists a loop γ such that s|γ has an odd number of zeros. Now assume, for

contradiction, that no such γ exists. Then, for any loop γ : S1 → M , every

transversal section of γ∗ν(N) has an even number of zeros. Let w1(ν(N)) be

the first Stiefel-Whitney class of the normal bundle. (see [MS74] for details).
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Then,

⟨γ∗w1(ν(N)), [S1]⟩ = ⟨w1(ν(N)), γ∗[S
1]⟩ = 0

for any loop γ. This implies ⟨w1(ν(N)), α⟩ = 0 for any α ∈ H1(M ;Z2),

so w1(ν(N)) = 0. Since the first Stiefel-Whitney class classifies real line

bundles, ν(N) is orientable, a contradiction.

It follows that the intersection form [N ] · [γ] in Z2-coordinate is not 0,

which is a contradiction because Hn−1(S
n;Z2) = H1(S

n;Z2) = 0. Hence we

conclude that N is orientable.

Now, let νM (N) ≃ N×(−ϵ, ϵ) ⊂M . For x ∈ N , we have TxM = R⊕TxN ,

implying

STxM =
{
(t, v) ∈ R⊕ TxN : t2 + ∥v∥2 = 1

}
,

where ∥·∥ is the metric inherited from M . Thus, the normal fiber at p =

(x, v) ∈ ST ∗N is

νST ∗M (ST ∗N)p = νST ∗
xM (ST ∗

xN)v ⊕ νM (N)x ≃ νSn−1(Sn)v ⊕ νM (N)x,

where Sn−1 is embedded in Sn along the equator.

Condition (B2) implies that f is a convex function, and M bounds a

compact convex domain. By Lemma 2.1.19, M is diffeomorphic to the n-

sphere. To apply Corollary 2.1.17 to our hypersurface M , we compute the

second fundamental form of M . The unit normal vector ν of M in Rn+1 is

∇f/||∇f ||, and we have

∂

∂xi
ν =

∂

∂xi

∇f
||∇f ||

=
∑
j

(
fij

||∇f ||
−
∑

k fkfkifj
||∇f ||3

)
∂

∂xj
.

It follows that

g(S(v), w) =

∑
i,j vifijwi

||∇f ||
−
∑

i,j,k vifikfkfjwj

||∇f ||3
=

Hess(f)(v, w)

||∇f ||

for v, w ∈ TM . The second term vanishes because w ∈ TM implies that

w · ∇f =
∑

j wjfj = 0. Using Corollary 2.1.17, we get the following.
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Proposition 3.2.4. Let M = f−1(0) ⊂ Rn+1 be a regular level set, and let

v, w be orthogonal unit tangent vectors at a point x ∈M . Then,

KM (v, w) =
Hess(f)x(v, v)Hess(f)x(w,w)−Hess(f)x(v, w)

2

||∇f(x)||2
.

Proposition 3.2.5. Let M = f−1(0) ⊂ Rn+1 be a regular level set. The

sectional curvature KM (σ) is always positive if and only if Hess(f) is either

positive definite or negative definite on M .

Proof. Since Hess(f)x is a symmetric bilinear form, there exists an orthonor-

mal basis B of TxM that diagonalizes Hess(f)x. Let

[Hess(f)x]B = diag(λ1, · · · , λn).

If KM > 0, then λiλj > 0 for any i, j implying that all λi have the same

sign. Thus, Hess(f)x is either positive definite or negative definite. Since

this process depends on x continuously, the sign of λi cannot change as

λi ̸= 0. The converse follows directly from Proposition 3.2.4, with a fact that

the definiteness of Hess(f) is determined by the definiteness of its (2×2)-

minors.

The following corollary can also be found in various literature, for exam-

ple [Sac60].

Corollary 3.2.6. Let f : Rn+1 → R and M = f−1(0) ⊂ Rn+1 be a regular

hypersurface. Assume that M has a positive sectional curvature. Then M is

diffeomorphic to the n-sphere.

Proof. By Proposition 3.2.5, Hess(f) is either positive definite or negative

definite. If Hess(f) is positive definite, f−1(−∞, 0] is convex, and the result

follows. If Hess(f) is negative definite, consider f̄ = −f , where M = f̄−1(0)

and Hess(f̄) is positive definite. The same argument applies.

Thus, the condition (B2) implies convexity of M . Moreover, the case

where Hess(f) is negative definite can be treated by using considering −f
instead of f . Hence, without loss of generality, we may assume (B2) to prove

Theorem 3.2.1.
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3.2.3 Proof of the Existence

Using the notations from Section 3.2.1 and Section 3.2.2, we assume (B1)

and (B2). We define a map π : Y \B → S1 ⊂ C by

π(x, y) =
x0 + iy0
|x0 + iy0|

.

As in Section 3.1.2, the angular form is defined by

Θ = i · d log π =
y0dx0 − x0dy0

x20 + y20
=

θ

x20 + y20
.

Substituting XH , as computed in Theorem 3.2.2, into θ, we obtain the fol-

lowing.

θ(XH) = y20 + x20
Hess(f)x(y, y)

∥∇f(x)∥2
f0(x)

x0
.

Lemma 3.2.7. Under the assumptions (B1) and (B2), there exists ε > 0,

depending only on the function f , such that Θ(XH) > ε on Y \B.

Proof. Define a function A = A(x, y) by

A(x, y) =
Hess(f)x(y, y)

∥∇f(x)∥2
f0(x)

x0
,

so that θ(XH) = A(x, y)x20 + y20. It suffices to show that A(x, y) > ε for all

(x, y) ∈ Y \B, since then

Θ(XH) =
A(x, y)x20 + y20

x20 + y20
>
εx20 + y20
x20 + y20

> ε.

Since 0 is a regular value of f and Y is compact, there exists some C > 0

such that 0 < ||∇f ||2 ≤ C on Y . By the compactness of Y , condition (B2)

implies that there exists some δ > 0 such that Hess(f)x(y, y) > δ for all

(x, y) ∈ Y .

Using condition (B1), we know that f0|x0=0 = 0. Thus, a Taylor expan-
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sion with respect to x0 gives

f(x0, x⃗) = f(0, x⃗) +
1

2
f00(0, x⃗)x

2
0 +O(x30),

f0(x0, x⃗)

x0
= f00(0, x⃗) +O(x0).

Since Hess(f)x(y, y) > δ, we have f00(x) = Hess(f)x((y0, 0), (y0, 0)) > δ

for all x. Choosing a small η > 0, we see that for |x0| < η, f0/x0 > δ/2.

Consequently, A(x, y) > δ2/2C for |x0| < η.

For |x0| ≥ η, we only need to bound f0/x0. Since f0(0, x⃗) = 0 and

f00 > δ, it follows that f0(x0, x⃗) > 0 when x0 > 0 and f0(x0, x⃗) < 0 when

x0 < 0. By the compactness of Y ∩ {|x0| ≥ η}, there exists some δ1 > 0

such that f0/x0 > δ1. This implies A(x, y) > δδ1/C for |x0| ≥ η. Letting

ε = min(δ2/2C, δδ1/C), we obtain the desired lower bound.

Theorem 3.2.8. Under the assumptions (B1) and (B2), the map π : Y \
B → S1 defines an open book decomposition of Y , to which the geodesic

vector field is adapted.

Proof. We will apply Lemma 2.4.4. From Lemma 3.2.7, there exists ε > 0

such that Θ(XH) > ε. Since Θ = i·d log π, the first condition of Lemma 2.4.4

is satisfied.

Next, consider the trivial tubular neighborhood of B, whose existence is

guaranteed by Lemma 3.2.3. Denote this tubular neighborhood by

ν(B) ≃ B ×D2

(x, y) 7→ (x⃗, y⃗;x0, y0)

where x0, y0 are small enough. Note that π(b, r, θ) = eiθ.

Since N is a totally geodesic submanifold by (B1), the geodesic vec-

tor field XH is tangent to ST ∗N = B. Therefore, all the assumptions of

Lemma 2.4.4 are all satisfied, yielding the desired result.

Now we can prove the first part of Theorem 3.2.1, which is the existence

of a global hypersurface of section.

62



CHAPTER 3. EXISTENCE OF GLOBAL HYPERSURFACES OF
SECTION

Theorem 3.2.9. Under the assumptions (B1) and (B2), the geodesic flow

on Y admits a global hypersurface of section, given by

P = {(x, y) ∈ Y : x0 = 0, y0 ≥ 0}.

Proof. As in Theorem 3.1.6, the lower bound of the angular form provided

by Lemma 3.2.7 ensures the boundedness of the return time.

We now examine the topology of the global hypersurfaces of section we

have constructed.

Lemma 3.2.10. Under the assumptions (B1) and (B2), N is diffeomorphic

to Sn−1.

Proof. We can express N as

N =
{
(0, x⃗) ∈ Rn+1 : f(0, x⃗) = 0

}
⊂
{
(0, x⃗) ∈ Rn+1 : x⃗ ∈ Rn

}
≃ Rn.

The convexity of f is preserved when f is restricted to the subspace {(0, x⃗) : x⃗ ∈ Rn},
which implies the result.

Proposition 3.2.11. The global hypersurface of section P constructed in

Theorem 3.2.1 is diffeomorphic to T ∗
≤1S

n−1, which is the subset of T ∗Sn−1

consisting of covectors of length ≤ 1. The boundary B = ∂P is homeomor-

phic to ST ∗Sn−1.

Proof. Let p be a diffeomorphism from the upper hemisphere Hn ⊂ Sn to

the closed disk Dn. Define a map ϕ : P → T ∗
≤1N by ϕ(x, y) = (x, p(y)). It

is clear that ϕ is a diffeomorphism. Using Lemma 3.2.10, we conclude the

result.

3.2.4 Extension of Return Map

To complete the proof of Theorem 3.2.1, we use the computational results in

this section to extend the return map to the boundary. We can take ∂y0 , ∂x0

as a symplectic normal frame of B in Y . To compute the normal Hessian,
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we analyze the linearized flow of XH along B. With the expression(
ẏ

ẋ

)
=

(
Hess(f)(y,y)

||∇f ||2 ∇f
y

)
,

the linearized matrix L is given by

L =

(
0 −Hess(f)(y,y)

||∇f ||2 Hess(f)

Id 0

)

along B, since the odd-differentials of f vanish along B. In particular, under

the (∂y0 , ∂x0) frame, we have

L =

(
0 −Hess(f)(y,y)

||∇f ||2 f00

1 0

)
.

As in Section 3.1.3, we have SN = −JL, so

SN = diag

(
1,

Hess(f)x(y, y)

||∇f(x)||2
f00(x)

)
.

The assumption (B2) implies that Hess(f) is positive definite and f00 is

always positive, so SN is positive definite. Note that even if we assume

Hess(f) to be negative definite, SN remains positive definite.

Proposition 3.2.12. Under the assumption (B1) and (B2), the return map

Ψ : P̊ → P̊ extends to the boundary smoothly.

Proof. This follows from Proposition 2.4.7.

Remark 3.2.13. In [CL24], we used the fact that

Θ(XH) =
Zt
NSNZN

Zt
NZN

+O(1)

where ZN is the normal vector, to compute SN .
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3.2.5 Examples

Hypersurface of Revolution

Now we apply Theorem 3.2.1 to some examples and compute the return

map. Let f : Rn+1 → R satisfy (B1) globally, (B2), and the following third

condition:

(B3) if ||x⃗|| = ||x⃗ ′||, then f(x0, x⃗) = f(x0, x⃗
′).

For convenience, we assume that f(0, x⃗) = 0 if and only if ||x⃗|| = α > 0. We

call a regular level set M = f−1(0), which satisfies (B1), (B2) and (B3), a

hypersurface of revolution. This is a higher dimensional analogue of a

surface of revolution in R3. In this case, we have the parametrization

M ∩ {(x0, x1, 0, · · · , 0)} = {(a(ϕ), α cosϕ, 0, · · · , 0) : ϕ ∈ R}

where a is a function of ϕ. For example, in the case of the ellipsoid, a(ϕ) =

a0 sinϕ. We apply Theorem 3.2.1 to ST ∗M = Y , obtaining the global hy-

persurface of section

P = {(0, x⃗; y0, y⃗) : y0 ≥ 0} .

Proposition 3.2.14. The return map Ψ : P → P is given by

Ψ((0, x⃗), (y0, y⃗)) =

((
0, cosG(∥y⃗∥)x⃗+

α

∥y⃗∥
sinG(∥y⃗∥)y⃗

)
,(

y0,−
∥y⃗∥
α

sinG(∥y⃗∥)x⃗+ cosG(∥y⃗∥)y⃗
))

where

G(t) := t

∫ 2π

0

√
α2(1− t2) sin2 σ + {a′(arcsin (

√
1− t2 sinσ))}2

α(1− (1− t2) sin2 σ)
dσ.

if t ̸= 0, and G(0) = 2π.

Proof. First, consider the case n = 2, so M is 2-dimensional. Here, we take
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the parametrization

M = {(a(ϕ), α cosϕ cosλ, α cosϕ sinλ) : ϕ, λ ∈ R} .

We interpret ϕ as a latitude and λ as a longitude. Consider the geodesic with

initial position (ϕ0 = 0, λ0) and initial velocity cos θ0∂ϕ/∥∂ϕ∥+sin θ0∂λ/∥∂λ∥.
Let ∆λ denote the change in λ after the first return time. This change equals

four times the longitude shift where the x0-coordinate of the curve becomes

the maximum. The situation is illustrated in Figure 3.22.

Let θ = θ(ϕ) be the angle of the geodesic’s velocity with respect to the

longitude. Then we have Clairaut’s integral (see [Arn89])

I(ϕ) = α cosϕ sin θ(ϕ),

where I(0) = α sin θ0 and θ0 = θ(0). Thus, sin θ(ϕ) cosϕ = sin θ0. At the

x0-maximum point, ϕ = π/2− θ0, yielding

∆λ = 4

∫ π/2−θ0

0

dλ

dϕ
dϕ = 4

∫ π/2−θ0

0

dλ

ds

ds

dϕ
dϕ,

where s is the arc-length parameter. From

ds2 = (α2 sin2 ϕ+ a′(ϕ)2)dϕ2 + α2 cos2 ϕdλ2,

we obtain

∆λ =4

∫ π/2−θ0

0

sin θ(ϕ)

α cosϕ

√
α2 sin2 ϕ+ a′(ϕ)2

cos θ(ϕ)
dϕ

= 4

∫ π/2−θ0

0

sin θ0
√
α2 sin2 ϕ+ a′(ϕ)2

α cosϕ
√
cos2 ϕ− sin2 θ0

dϕ.

To get the formula in the theorem, substitute ϕ to arcsin(cos θ0 sinσ).

In the general case, consider the initial condition of geodesic (x0,y0)

starting in P . The 3-dimensional linear subspace S ⊂ Rn+1 containing 0, x0,

y0, and the x0-axis intersects M in a 2-dimensional ellipsoid containing the

2We thank Jinho Jeoung for providing the illustration.
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geodesic. Thus, applying the 2-dimensional result yields the general formula.

Figure 3.2: Illustration of the situation. The geodesic is drawn in red.

It is straightforward to see that the return map Ψ is a Hamiltonian dif-

feomorphism generated by H(x, y) =
(∫
G
)
(||y⃗||). Some boundary behavior

can be analyzed directly from the formula.

Proposition 3.2.15. If a′(0)/α /∈ Z, Ψ|∂P does not have a fixed point.

Proof. We can write Ψ|∂P in matrix form,

Ψ(x⃗, y⃗) = A

(
x⃗

y⃗

)
=

(
cosG(1) α sinG(1)

− 1
α sinG(1) cosG(1)

)(
x⃗

y⃗

)

Here, G(1) is a constant independent of x⃗ or y⃗. Substituting t = 1 into

G(t), we have G(1) = 2πa′(0)/α. The matrix A has a fixed point only if

cosG(1) = 1, or equivalently, a′(0)/α ∈ Z.

Ellipsoids

The result of Proposition 3.2.14 applies directly to ellipsoids with specific

axis length configurations. Let 0 < a ≤ 1 and consider the function

f(x0, x⃗) =
x20
a2

+ x21 + · · ·+ x2n.
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This is exactly the setting of Proposition 3.2.14, with B(ϕ) = a sinϕ, α = 1.

Then B′(ϕ) = a cosϕ, and

{B′(arcsin (
√

1− t2 sinσ))}2 =
(
−a cos(arcsin(

√
1− t2 sinσ)

)2
= a2(1− (1− t2) sin2 σ).

Therefore,

G(t) := t

∫ 2π

0

√
a2 + (1− a2)(1− t2) sin2 σ

1− (1− t2) sin2 σ
dσ.

Lemma 3.2.16. Define −(1− a2)(1− t2)/a2 = k. Then,∫ √
a2 + (1− a2)(1− t2) sin2 σ

1− (1− t2) sin2 σ
dσ = −1− a2

a
F (σ |k) + 1

a
Π
(
1− t2;σ|k

)
,

where F and Π are the elliptic integrals of the first and third kinds, respec-

tively:

F (ϕ | k) :=
∫ ϕ

0

dθ√
1− k sin2 θ

, Π(n;ϕ | k) :=
∫ ϕ

0

dθ

(1− n sin2 θ)
√
1− k sin2 θ

.

Proof. Let 1− a2 = b and 1− t2 = c for convenience. Then,

∫ √
a2 + bc sin2 σ

1− c sin2 σ
dσ =

∫
a2 + bc sin2 σ

(1− c sin2 σ)
√
a2 + bc sin2 σ

dσ

=

∫
−b(1− c sin2 σ) + (a2 + b)

(1− c sin2 σ)
√
a2 + bc sin2 σ

dσ

= − b
a

∫
dσ√

1 + (bc/a2) sin2 σ

+
1

a

∫
dσ

(1− c sin2 σ)
√
1 + (bc/a2) sin2 σ

= − b
a
F (σ| − bc/a2) +

1

a
Π(c;σ| − bc/a2).
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With Proposition 3.2.14 and Lemma 3.2.16, we can compute the return

map explicitly.

Now we consider the limit cases. When a = 1, M is a standard sphere,

and the return map converges to the identity. Setting b = 0, we have

F (σ | 0) = σ. Furthermore,

Π(n; 2π | 0) =
∫ 2π

0

dθ

1− n sin2 θ
=

2π√
1− n

,

if 0 < n < 1, so Π(1− t2, 2π | 0) = 2π/t. It follows from Lemma 3.2.16 that

G(t) = 2π, and τ is an identity map.

The converse limit case is a → 0. In this case, the sphere deforms, and

the dynamics approach a billiard. Define fa(x0, x⃗) = x20/a
2 + ∥x⃗∥2, and

f−1
a (1) =Ma for 0 < a ≤ 1. Let

M0 =
{
x ∈ Rn+1 : x0 = 0, x21 + · · ·+ x2n ≤ 1

}
.

We can consider the map βab :Ma →Mb defined by βab(x0, x⃗) = (bx0/a, x⃗)

for 0 ≤ b < a. Then βab is a diffeomorphism for any 0 < b < a, but βa0 is a

2-to-1 map outside the boundary. This means that we can consider M0 is a

2-to-1 limit of a family {Ma}.
We also need to consider the behavior of tangent vectors on N0. Explic-

itly, there is an obvious map dβab between tangent bundles, and we know

that if b = 0, the boundary vectors (±y0; y⃗) map to the same vectors. Let

Y0 = {(x⃗, y⃗) ∈ T ∗Rn : ∥x⃗∥ ≤ 1, y⃗ points inward ∂M0 if ∥x⃗∥ = 1, ∥y⃗∥ ≤ 1} ,

then this is a 2-to-1 limit of Ya = T ∗Ma.

It’s interesting to study the limit of geodesics on M0, which become

straight lines in the interior and reflect at the boundary. This dynamics on

Y0 is called a billiard. The global hypersurfaces of section we constructed

also converge to a certain hypersurface in Y0. That is,

P0 = {(x⃗, y⃗) ∈ T ∗Rn : ∥x⃗∥ = 1, y⃗ points inward to ∂M0, ∥y⃗∥ ≤ 1} .
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Proposition 3.2.17. The submanifold P0 is a global hypersurface of the

section of the billiard on Y0, and the return map is given by

Ψ(x⃗, y⃗) =

(
x⃗ cos θ0 +

y⃗

∥y⃗∥
sin θ0, y⃗ cos θ0 − ∥y⃗∥x⃗ sin θ0

)
,

where θ0 = 2arccos ∥y⃗∥.

Proof. A billiard trajectory lies on a 2-dimensional subspace that contains

the point x⃗, direction y⃗, and the origin. Thus, the problem reduces to finding

the return map for a 2-dimensional billiard. After an appropriate rotation, we

can map (0, x⃗) to e1 and (0, y⃗/||y⃗||) to e2 in R2. The situation is illustrated in

the Figure 3.33. Notice that the length of (y0, y⃗), the red vector in Figure 3.3,

is 1. Thus, the problem of finding the return map of the billiard simplifies

to an elementary geometric problem.

Figure 3.3: Return map of the billiard in dimension 2.

Returning to Proposition 3.2.14 and Lemma 3.2.16, setting a = 0 in

G(t), we have

G(t) =

∫ 2π

0

t
√
(1− t2) sin2 σ

1− (1− t2) sin2 σ
dσ

= − | sinσ|
sinσ

·

(
arctan

√
1− t2 − tanσ

t
+ arctan

√
1− t2 + tanσ

t

)∣∣∣∣∣
2π

0

= 4arctan

√
1− t2

t
= 4arccos t.

3Again, we thank Jinho Jeoung for the nice illustration.
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Substituting this into Proposition 3.2.14, we see that this is exactly twice the

return map in Proposition 3.2.17. The reason the two return maps are not

the same but twice as large is as follows: Consider a point (x, y) = (0, x⃗; y0, y⃗)

in Pa with y0 > 0. Following the geodesic with initial condition (x, y), there

exists a minimal t0 > 0 such that γ(t0) = (0, x⃗′; y′0, y⃗
′). However, we must

have y′0 < 0 in this case. In fact, this point corresponds to where the angular

form becomes exactly π. This point also converges to the point in P0 in limit,

since it’s a 2-to-1 limit. Hence, the limit of the return map of Pa does not

converge to the first return map, but to the second return map of billiard.

Kepler Problem

Consider the Kepler Hamiltonian defined on T ∗R3 \ {0},

E(q, p) =
1

2
|p|2 − 1

|q|

The Hamiltonian is singular at the origin, but we can apply Moser regular-

ization, which will be discussed in Section 4.1.3, to regularize each level set.

The regularization for the level set with Kepler energy E0 is given by the

composition of the switch map and the stereographic projection from the

unit cotangent bundle of S3 with radius r =
√
−2E0. The regularized system

with Kepler energy E0 can be regarded as a geodesic flow on the unit cotan-

gent bundle of S3 ⊂ R4 with radius r =
√
−2E0. The global hypersurface of

section is given by

P = {(x, y) : x3 = 0, y3 ≥ 0} .

In T ∗R3, we have

x3 =
2r2p3
p2 + r2

= 0

y3 =
p2 + r2

2r2
q3 −

p · q
r2

p3 ≥ 0.

Hence,

P =
{
(q, p) ∈ E−1(c) : p3 = 0, q3 ≥ 0

}
.
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This is the set of points of maximum height of the Kepler orbits, and the

Reeb dynamics on the binding correspond to the planar Kepler problem.
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Chapter 4

Periodic Orbits of Spatial

Kepler Problem

In this chapter, we investigate the periodic orbits of the spatial Kepler prob-

lem. We review the generalities of the Kepler problem in Section 4.1, and

the planar rotating Kepler problem in Section 4.2. In Section 4.3, we exam-

ine the moduli space of the periodic orbits of the spatial Kepler problem

and classify all periodic orbits of the spatial rotating Kepler problem. In

Section 4.4, we compute the Conley-Zehnder index of the periodic orbits of

the spatial Kepler problem and relate it to the symplectic homology of the

cotangent bundle of the 3-sphere. This chapter is based on joint work with

Beomjun Sohn.

4.1 Kepler Problem

A Kepler problem is a dynamical system that describes the motion of

a mass-less body in Euclidean space under the gravitational force exerted

by another body. For simplicity, we assume that the mass of the source of

gravitational force is 1 and it lies at the origin. The Hamiltonian describing
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the Kepler problem is given by

E : T ∗(R3 \ {0}) → R

(q, p) 7→ 1

2
|p|2 − 1

|q|
.

Here, q is the position, which is the point on the base manifold R3 \{0}, and
p is the momentum, which is the vector in Tq(R3 \ {0}). The phase space

T ∗R3 is equipped with the natural symplectic form dp ∧ dq =
∑
dpi ∧ dqi.

The Hamiltonian E describes the mechanical energy of the mass-less body.

Solving the Hamiltonian equation for the Kepler problem is straightforward;

we have

XE = p · ∂q −
q

|q|3
· ∂p

or equivalently

ṗ = − q

|q|3
, q̇ = p.

4.1.1 Invariants of Kepler Problem

Before we investigate the solutions of the Kepler problem, we introduce two

important invariants associated with it.

The Kepler problem has an obvious SO(3)-symmetry. By Theorem 2.3.11,

there exists an invariant corresponding to this symmetry. This invariant is

called the angular momentum and is defined by

L = (L1, L2, L3) = q × p

where × denotes the cross product. To verify this, consider L3, which corre-

sponds to rotation along the q3- and p3-axis. The corresponding Hamiltonian

vector field is given by

XL3 = −q2∂q1 + q1∂q2 − p2∂p1 + p1∂p2 .
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By integrating, we find that XL3 generates a rotation around the origin,

Fl
XL3
t

(
q

p

)
=

(
q1 cos t− q2 sin t q1 sin t+ q2 cos t q3

p1 cos t− p2 sin t p1 sin t+ p2 cos t p3

)
.

Thus, we conclude that each component of L in T ∗R3 corresponds to the

rotational symmetry along each axis, and {E,Li} = 0 for each i = 1, 2, 3.

We now introduce another invariant of the Kepler problem: the Laplace-

Runge-Lenz vector, defined as

A = p× L− q

|q|
.

It is clear that A is perpendicular to L.

Lemma 4.1.1. The Laplace-Runge-Lenz vector A is an invariant of the

Kepler problem. In other words, {E,A} = 0, or equivalently, A is constant

along the Kepler orbit.

Proof. We compute the time derivative of A along the Kepler orbit,

Ȧ = ṗ× L+ p× L̇− q̇

|q|
+

(q · q̇)q
|q|3

=
1

|q|3
(−q × (q × p)− |q|2p+ (q · p)q) = 0.

In the second equality, we used the Hamiltonian equation ṗ = −q/|q|3 and

q̇ = p, as well as the invariance of angular momentum L̇ = 0. The last

equality follows from an elementary identity involving the cross product.

Remark 4.1.2. From the perspective of Theorem 2.3.11, there must be

a symmetry corresponding to the invariant A. However, unlike the case of

angular momentum, this symmetry is not directly observable. The Kepler

problem can be described as a geodesic flow on S3 via Moser regulariza-

tion, as described in Section 4.1.3. The geodesic flow on S3 possesses an

SO(4)-symmetry, which is 6 dimensional. The symmetry corresponding to

A originates from this structure and is often referred to as the hidden sym-

metry of the Laplace-Runge-Lenz vector.
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4.1.2 Three Laws of Kepler

We begin by stating the celebrated three laws of Kepler.

Theorem 4.1.3 (Kepler’s Law). The following hold for the orbits of the

Kepler problem.

1. The orbits are conic sections with one focus at the origin. If the energy

is negative, the orbits are ellipses.

2. In polar coordinates on the plane contains an orbit, the areal velocity

Ṡ = r2θ̇/2 is constant.

3. If the orbit is closed, the period τ of the orbit is given by

τ2 = − π2

2E3
.

We now prove the first law in Theorem 4.1.3. This proof follows the

approach in [FvK18].

Theorem 4.1.4. The orbits of the Kepler problem are conic sections, with

eccentricity ε satisfying

ε2 = 2E|L|2 + 1.

The equation of the orbit in polar coordinates on the plane L · q = 0 is given

by

r =
|L|2

1 + |A| cos(θ − g)
.

Proof. We first observe that ⟨A,L⟩ = 0, and compute

|L|2 = ⟨q × p, L⟩ = ⟨p× L, q⟩ =
〈
A+

q

|q|
, q

〉
= ⟨A, q⟩+ |q|

After rotating the coordinate system to align L with the q3-axis, we can

say L = (0, 0, l) and A = (|A| cos g, |A| sin g, 0). Write q = (r cos θ, r sin θ, 0).

Substituting these into the equation, we find

r =
l2

1 + |A| cos(θ − g)
.

76



CHAPTER 4. PERIODIC ORBITS OF SPATIAL KEPLER PROBLEM

This is the polar equation of a conic section, with eccentricity equal to |A|.
Finally, we prove that |A|2 = 2E|L|2 + 1. From direct computation,

|A|2 = |p× L|2 − 2

|q|
⟨p× L, q⟩+ 1 = |p|2|L|2 − 2

|q|
⟨q × p, L⟩+ 1

= |p|2|L|2 − 2

|q|
|L|2 + 1 = 2

(
|p|2 − 1

|q|

)
|L|2 + 1.

Figure 4.1: Illustration of the Kepler orbit determined by L and A.

Corollary 4.1.5. The Laplace-Runge-Lenz vector is parallel to the major

axis of the Kepler orbit.

Proof. The formula in the proof of the previous theorem implies that q

aligns with the major axis when θ = g, at which point q is parallel to A. In

particular, A points toward the closest point on the major axis to the origin.

This is illustrated in Figure 4.2.
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Figure 4.2: Illustration of the Laplace-Runge-Lenz vector for L = (0, 0, 1)
and A = (

√
3/2, 0, 0).

Due to the SO(3)-symmetry, it suffices to consider orbits lying in R2 or

the q1q2-plane. Using polar coordinates on R2, we write

(q1, q2) = (r cos θ, r sin θ).

To ensure the coordinate change is symplectic, the momenta transform as

p1dq1 + p2dq2 = prdr + pθdθ

yielding

(p1, p2) =

(
cos θpr −

sin θ

r
pθ, sin θpr +

cos θ

r
pθ

)
.

In this representation, the energy E and angular momentum L are expressed

as

E(r, θ) =
1

2

(
p2r +

p2θ
r2

)
− 1

r
,

L = r cos θp2 − r sin θp1 = pθ

From the Hamiltonian equation θ̇ = ∂pθE implies

θ̇ =
pθ
r2

=
L

r2
.

Theorem 4.1.6. The areal velocity of the orbit of a Kepler problem is con-
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stant.

Proof. Let γ be a Kepler orbit with an initial point on the q1-axis. Denote

the area swept out by γ from time 0 to t by A(t). We have dA/dθ = r2/2,,

so

A(t) =
1

2

∫ t

0
r2dθ =

1

2

∫ t

0
r2θ̇dt =

1

2

∫ t

0
Ldt =

Lt

2

Thus, Ȧ(t) = L/2, and since L is invariant, the areal velocity is constant.

Theorem 4.1.7. Let τ be the period of Kepler orbit. Then we have

τ2 = − π2

2E3
.

Proof. From the previous theorem, we have

πab = A(τ) =
Lτ

2

where a and b are the semi-major and semi-minor axes, respectively. The

eccentricity of the ellipse satisfies ε2 = 2EL2 + 1, and the semi-major axis

is given by

a =
1

2

(
L2

1 + |A|
+

L2

1− |A|

)
=

L2

1− |A|2
.

The semi-minor axis b =
√
1− ε2a, so

πab = πa2ε =
L4π

√
1− |A|2

(1− |A|2)2
=

πL4

(1− |A|2)3/2

Squaring the earlier equation,

τ2 =
4A2

L2
=

4π2L8

L2(1− |A|2)3
=

4π2L8

−8E3L8
= − π2

2E3
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4.1.3 Moser Regularization

The singularity at the origin in the Kepler problem prevents the level set

from being compact or complete. To address this, various regularization

methods have been developed. In this subsection, we introduce the regular-

ization method for the Kepler problem proposed by Moser in [Mos70]. We

begin by noting the formula used in the regularization process.

Lemma 4.1.8. Let Sn
r be the n-sphere of radius r. The stereographic pro-

jection from the north pole (r, 0, · · · , 0) is given by

Φr : T
∗S3

r → T ∗R3

(x, y) 7→
(

rx⃗

r − x0
,
r − x0
r

y⃗ +
y0
r
x⃗

)
and the inverse is given by

Ψr : T
∗R3 → T ∗S3

r

(p, q) 7→
(
r(p2 − r2)

p2 + r2
,

2r2p

p2 + r2
,
p · q
r
,
p2 + r2

2r2
q − p · q

r2
p

)
In particular, the following relations hold.

r − x0 =
2r3

p2 + r2
, p2 =

2r3

r − x0
− r2,

|y|2 = (p2 + r2)2

4r4
|q|2, |q| = 2r2

p2 + r2
|y| = r − x0

r
|y|.

The following procedure is known as the Moser regularization of the

Kepler problem. We fix the energy level E = E0 < 0. Consider the Hamil-

tonian on T ∗(R3 \ {0}),

K̃E0(q, p) =
1

2
(|q| (E(q, p)− E0) + 1)2 =

1

2

(
1

2
(|p|2 − 2E0)|q|

)2

.

The Hamiltonian K̃E0 extends smoothly to the origin, allowing it to be

defined on T ∗R3. Moreover, the regular level set E−1(E0) is a subset of

K̃−1(1/2), so the Hamiltonian flows of E and K̃E0 are parallel on this level
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set.

The switch map σ is a symplectomorphism defined on T ∗R3 as σ(q, p) =

(p,−q). By composing K̃E0 with the switch map and the inverse stereo-

graphic projection Ψr : T
∗R3 → T ∗S3

r , we obtain a Hamiltonian on T ∗S3
r ,

Kr(x, y) = K̃E0(Ψr(p,−q)) =
1

2
|y|2

(
r2 + (r − x0)

(
−E0

r2
− 1

2

))2

.

Setting r =
√
−2E0, we simplify:

Kr(x, y) =
r4

2
|y|2.

The Hamiltonian Kr defines the geodesic flow on T ∗S3
r . In short, we can

embed the level set E = E0 of the Kepler problem as a sub-system of the

geodesic flow on T ∗S3
r .

For convenience, we pull back Kr to T
∗S3 = T ∗S3

1 using the scaling map

S1,r : T
∗S3 → T ∗S3

r

(x, y) 7→ (rx, y/r).

The Hamiltonian on T ∗S3 then becomes

Kr(x, y) =
r2

2
|y|2.

For the future reference, we present the following lemma froom [MvK22a],

which can also be derived from Proposition 2.3.8.

Lemma 4.1.9. Let T ∗Sn ⊂ T ∗Rn+1 be defined by equations |x|2 = 1 and

⟨x, y⟩ = 0. Let K : T ∗Sn → R be a Hamiltonian of a form

K(x, y) =
1

2
|y|2f(x, y)2.

Then, the Hamiltonian vector field of K is given by

XK = (f2y + |y|2f(fy − (fy · x)x)) · ∂x
+ |y|2f((fy · x)y − fx − (f + fy · y − fx · x)x) · ∂y
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Applying this lemma with f(x, y) = r2, we find

XK = r2y · ∂x − r2|y|2x · ∂y.

Imposing the energy condition K(x, y) = 1/2, we have |y|2 = 1/r2. Thus,

the equations of motion become(
ẋ

ẏ

)
=

(
r2y

−x

)

These orbits correspond to great circles on T ∗S3 with speed 1/r. With this,

we investigate the orbits added during the process of Moser regularization.

We impose the initial condition

(q(0); p(0)) =

(
0, 0,− 1

E0
; 0, 0, 0

)
=

(
0, 0,

2

r2
; 0, 0, 0

)
.

Intuitively, this condition describes an object starting to fall directly into the

origin, eventually colliding with it in finite time. On T ∗S3, this corresponds

to the initial condition

(x(0); y(0)) =

(
−1, 0, 0, 0 ; 0, 0, 0,−1

r

)
.

The orbit of XKr on T ∗S3 with this initial condition is given by

(x(t); y(t)) =

(
− cos(rt), 0, 0,− sin(rt) ;

sin(rt)

r
, 0, 0,−cos(rt)

r

)
.

Applying the stereographic projection and the inverse switch map, we obtain

the orbit in T ∗R3

(q(t); p(t)) =

(
0, 0,

1

r2
(1 + cos(rt)) ; 0, 0,− r sin(rt)

1 + cos(rt)

)
.

For any initial condition with p(0) = 0, we obtain the same type of or-

bit. This type of orbit is referred as a collision orbit and is illustrated in

Figure 4.3. We also describe the behavior of this orbit in T ∗R3.
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1. At t = 0 : q reaches its maximum height |q| = −1/E0, and p = 0.

2. For t ∈ [0, π/r) : q moves toward the origin, and p diverges to −∞.

3. For t ∈ (π/r, 2π/r] : q moves away from the origin, and p decreases

from ∞.

4. At t = 2π/r : q returns to its maximum heights, and p = 0.

In summary, the collision orbit oscillates between the origin and the maxi-

mum height in T ∗R3.

Figure 4.3: Illustration of the collision orbit.

Additionally, the above parameterization of the collision orbit γ is a

reparametrization of the Kepler orbit, meaning the orbital speed differs. In

particular, the period of γ as a Kepler orbit is not equal to 2πr. However, γ

can be regarded as a special case of an elliptical Kepler orbit with eccentricity

1. In this sense, the period of γ satisfies the Kepler’s third law, which depends

solely on the Kepler energy.

4.2 Planar Rotating Kepler Problem

The planar rotating Kepler problem is the Kepler problem restricted

to R2 with a rotating frame around q3- and p3-axes. It is described by the
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Hamiltonian

H = E + L3 =
1

2
|p|2 − 1

|q|
+ (q1p2 − q2p1).

Here, E is referred to as the Kepler energy, and H as the total energy

when clarification of the term “energy” is necessary.

Note 4.2.1. The concept of the rotating Kepler problem originates from the

restricted circular three-body problem. In the circular three-body problem,

the motion of two primary bodies is assumed to be circular. The Hamiltonian

for this system is

Et(q, p) =
1

2
|p|2 − µ

|q −m(t)|
− 1− µ

|q − e(t)|
.

where µ is a mass ratio, e(t) = −µ(cos t,− sin t), andm(t) = (1−µ)(cos t,− sin t).

This Hamiltonian is time-dependent. However, by adding an angular mo-

mentum term to account for the motion of the two bodies, we obtain the

following autonomous Hamiltonian

H =
1

2
|p|2 − µ

|q − (1− µ)|
− 1− µ

|q − µ|
+ (q1p2 − q2p1)

An autonomous Hamiltonian is easier to analyze and handle mathematically.

The rotating Kepler problem is a limiting case of this system, where µ→ 0.

The Hamiltonian can be reformulated as follows

H =
1

2
|p̃|2 + U(|q|)

where p̃ = (p1 − q2, p2 + q1), U(r) = −1/r − r2/2. The function U is called

the effective potential, as it encapsulates all terms that depend only on

q. The graph of U is shown in Figure 4.4.

Let π : T ∗(R2 \ {0}) → R2 \ {0} be the projection. The Hill’s region

for a given energy level c < 0 is defined as

Hc = {q : U(q) ≤ c} .
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Figure 4.4: The graph of effective potential U . The maximum value is −3/2.

Since the term |p̃|2 is always nonnegative, it follows that if H(q, p) ≤ c, then

q must belong to Hc. The effective potential U(r) has a unique maximum

value of −3/2 at r = 1. It follows that when c < −3/2, the Hill’s region Hc

consists of one bounded component and one unbounded component. When

c < −3/2, the Hill’s region equals to R2 \ {0}. An illustration of the Hill’s

region for an energy level of −1.6 is shown in Figure 4.5. We are particularly

interested in the orbits that lie within the bounded component of the Hill’s

region.

4.2.1 Moser Regularization

We can apply Moser regularization to the planar rotating Kepler problem,

following the procedure outlined in Section 4.1.3. For an energy level c <

−3/2, consider the Hamiltonian

Hα(p, q) =
1

2
|p|2 − 1

|q|
+ α(q1p2 − q2p1)
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Figure 4.5: The illustration of Hill’s region of energy -1.6.

where α is a parameter introduced to track the role of angular momentum.

We define the following Hamiltonian on the bounded component of the Hill’s

region

Kα,c(p, q) =
1

2
((H − c)|q|+ 1)2 .

Next, we pull back Kα,c to T
∗S2

r via stereographic projection and the switch

map,

Kα,c(x, y) =
1

2
|y|2

(
r2 + (r − x0)

(
α

r2
(x1y2 − x2y1)−

c

r2
− 1

2

))2

.

Here, we take r =
√
−2c and a = α/r2, simplifying the expression to

Kα,c =
1

2
|y|2

(
r2 + a(r − x0)(x1y2 − x2y1)

)2
.

We further pull-backKα,c to T
∗S3

1 using a scaling map. On T ∗S2, the Hamil-

tonian becomes

Ka,c(x, y) =
1

2
|y|2 (r + a(1− x0)(x1y2 − x2y1))

2 .
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If we set a = 0, the Hamiltonian reduces to the Moser-regularized Kepler

Hamiltonian described in Section 4.1.3.

4.2.2 Periodic Orbits

We investigate possible periodic orbits of the planar rotating Kepler prob-

lem. Since {E,L3} = 0, we have

FlXH
t = FlXE

t ◦ FlXL3
t .

As shown in Section 4.1, the periodic orbits of XE are ellipses. The flow

FlXL3 represents a rotation about the q3- and p3-axes with a period of 2π.

The first case is the circular orbits. We require

ε2 = 2EL2
3 + 1 = 2E(c− E)2 + 1 = 0

at the energy level H = c. In this case, the orbit of H is automatically

periodic. A straightforward computation shows that if c < −3/2, there are

three possible values of E, and if c > −3/2 there is only one possible value

of E.

Assume c < −3/2, so there are three distinct circular orbits.

1. The retrograde orbit, denoted by γ+, corresponds to the smallest

Kepler energy.

2. The direct orbit, denoted by γ−, corresponds to the second smallest

Kepler energy.

3. The orbit with the largest Kepler energy is the outer direct orbit,

lying outside the bounded component of the Hill’s region, and is not

of interest here.

The retrograde and direct orbits are distinguished by the sign of angular

momentum. For ε2 = 0, we have L3 = ±1/
√
−2E. Thus, the retrograde

orbit (with lower Kepler energy) has positive angular momentum, while the

direct orbit has negative angular momentum. From the graph, the retrograde

orbit is the one that persists beyond the critical energy level c = −3/2.
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Figure 4.6: Graph of 2E(c−E)2+1 = 0. The critical energy level E = −1/2
corresponds to c = −3/2.

Proposition 4.2.2. Let γ+ (retrograde) and γ− (direct) be circular orbits

of the planar rotating Kepler problem with c < −3/2. The total energy c±k,l
is given by

c±k,l = Ek,l ±

√
1

−2Ek,l

while the periods of γ± is are

τ± =
2π

(−2E)3/2 ± 1
.

Proof. For the circular orbits, ε2 = 2EL2
3 + 1 = 0, so L3 = ±1/

√
−2E,

proving the first statement.

To find the periods, we parametrize the orbits explicitly (see [AFFvK13],

Section B.2). Using the transformation (q1, q2) = (r cos θ, r sin θ) from Sec-
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tion 4.1, the Hamiltonian becomes

H(r, θ; pr, pθ) =
1

2

(
p2r +

p2θ
r2

)
− 1

r
+ pθ

The Hamiltonian vector field is

XH =
p2θ − r

r3
∂pr + pr∂r +

(pθ
r2

+ 1
)
∂θ

For circular orbits (r = r0), pr = 0 and p2θ = r0. The solution is


r(t)

θ(t)

pr(t)

pθ(t)

 =


r0(

± 1

r
3/2
0

+ 1

)
t

0

±√
r0


Here, pθ =

√
r0 corresponds to the retrograde orbit (L3 > 0), while pθ =

−√
r0 corresponds to the direct orbit.

Using E = −1/2r0, substituting r0 = −1/2E into the period formula

completes the proof.

In the second case, the orbit of E is not circular. Here, the period of

XE-orbit must resonate with the 2π-periodic flow FlXL3 . As a result, the

orbit must be 2π(l/k)-periodic for some k, l ∈ N.
From Kepler’s third law, the energy of such an orbit is given by

Ek,l = −1

2

(
k

l

)3/2

.

An example of such an orbit is shown in Figure 4.81. These orbits also possess

rotational symmetry. Thus, for each pair (k, l) and |L3| < 1/
√

−2Ek,l, there

exists an S1-family of elliptic orbits that form a torus. Additionally, there

is a retrograde orbit and a direct orbit with Kepler energy Ek,l, whose total

energies are denoted c±k,l.

1We appreciate Chankyu Joung for illustrating this diagram.
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Figure 4.7: Illustration of the birth and death of elliptic orbits. Each interior
point on the segments corresponds to an S1-family of orbits.

To summarize, for given Ek,l, there exists an S1-family of orbits for

each total energy between c−k,l and c
+
k,l. At the boundary energies c±k,l, these

families degenerate into retrograde or direct circular orbits. This observation

is a key concept used in computing the Conley-Zehnder index of closed orbits

in the rotating Kepler problem, as described in [AFFvK13]. Here, we present

the result without detailed derivation.

Theorem 4.2.3 ([AFFvK13]). Let γN± denote the N -th iterate of the simple

retrograde and direct orbits of rotating the Kepler problem. Assume that

Nτ± /∈ Z 2π
(−2E)3/2

. Then,

µCZ(γ
N
± ) = 1 + 2max

{
k ∈ Z | k 2π

(−2E)3/2
< Nτ±

}
.

In particular, for energy levels c < −3/2, the bounded component of the
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Figure 4.8: Planar periodic orbit with Kepler energy E3,2 and initial condi-
tions q2 = p1 = 0, p2 = 1/2.

rotating Kepler problem is dynamically convex, and the doubly covered ret-

rograde circular orbit is the only periodic orbit with a Conley-Zehnder index

3.

Remark 4.2.4. Since c = E +L3, there exists a value of c between c− and

c+ such that L3 = 0. The corresponding orbits are the collision orbits.

4.3 Spatial Rotating Kepler Problem

In this section, we consider the Kepler problem adapted to the rotating frame

around the q3- and p3-axes, which we will refer to as the spatial rotating
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Kepler problem. The Hamiltonian is given by

H : T ∗(R3 \ {0}) → R

(q, p) 7→ 1

2
|p|2 − 1

|q|
+ (q1p2 − q2p1).

The primary distinction here is the spatial dimension. We can also use the

notion of an effective potential by introducing:

p̃ = (p1 − q2, p2 + q1, p3)

U(q) = − 1

|q|
− 1

2
|q|2

H(q, p) =
1

2
|p̃|2 + U(q).

As before, we can write H = E+L3 and {E,L3} = 0, meaning that periodic

orbit of H is a composition of a Kepler orbit and the L3-flow.

4.3.1 Moser Regularization and Vertical Collision Orbits

We apply Moser regularization to the spatial rotating Kepler problem. As

in Section 4.2, the Hamiltonian on T ∗S3 is given by

Kα,c(x, y) =
1

2
|y|2 (r + a(1− x0)(x1y2 − x2y1))

2 ,

where a = α/r2 and r =
√
−2c.

Lemma 4.3.1. The equations of motion for Kα,c are given by

ẋ0

ẋ1

ẋ2

ẋ3

ẏ0

ẏ1

ẏ2

ẏ3


=



f2y0

f2y1 − a|y|2fx1x2(1− x0)

f2y2 + a|y|2fx1x2(1− x0)

f2y3

|y|2f(a(x1y2 − x2y1)− x0(r + a(x1y2 − x2y1)))

|y|2f(−ay2(1− x0)− x1(r + a(x1y2 − x2y1)))

|y|2f(ay1(1− x0)− x2(r + a(x1y2 − x2y1)))

−|y|2fx3(r + a(x1y2 − x2y1))


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where f(x, y) = r + a(1− x0)(x1y2 − x2y1)

Proof. We can apply Lemma 4.1.9, where

fx = (−a(x1y2 − x2y1)), ay2(1− x0),−ay1(1− x0), 0)

fy = (0,−ax2(1− x0), ax1(1− x0), 0)

fy · x = 0

f + fy · y − fx · x = r + a(x1y2 − x2y1).

Solving this equation directly for a general solution is challenging. How-

ever, for a collision orbit with the initial condition

(p(0); q(0)) = (0, 0, P ; 0, 0, Q),

the equation of motion simplify to
ẋ0

ẋ3

ẏ0

ẏ3

 =


r2y0

r2y3

−x0
−x3


with x1 = x2 = y1 = y2 = 0. These orbits are unaffected by angular mo-

mentum and correspond to the collision orbits of the (non-rotating) Kepler

problem with initial conditions q3(0) = ∓1/E and p3(0) = 0, as described in

Section 4.1.3. We denote these orbits by γc± , and call (positive/negative)

vertical collision orbits. These orbits are illustrated in Figure 4.9.

4.3.2 Moduli Space of Spatial Kepler Orbits

Recall that for fixed Kepler energy E, every Kepler orbit is an ellipse (in-

cluding collision) of the same period. The regularized Kepler problem can

be identified with the geodesic flow on T ∗S3. Hence the total orbit space

must be ST ∗S3 which is diffeomorphic to S3×S2. Consequently, the moduli
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Figure 4.9: Illustration of vertical collision orbits.

space of orbits corresponds to the space of unit geodesics on S3. A well-

known result characterizes the space of geodesics on spheres.

Theorem 4.3.2. The moduli space of unit geodesics on S2 is diffeomorphic

to S2, and the moduli space of unit geodesics on S3 is diffeomorphic to

S2 × S2.

Proof. See [Bes78], Proposition 2.9. and 2.10.

We’ll rederive this result in a way adapted to the Kepler problem. We

first consider the planar problem. Let NE denote the moduli space of orbits

for the planar Kepler problem with fixed E. Specifically, NE is the level set

of KE : T ∗S2 → R, quotiented by S1-action induced by the Hamiltonian

flow. A planar orbit is characterized by:

1. The rotation direction (determined by sign of L3),

2. The major axis (determined by the direction of (A1, A2)),

3. The eccentricity (given by ε2 = |A|2 = 2EL2
3 + 1).

Using the formula for the eccentricity, we have

A2
1 +A2

2 + (
√
−2EL3)

2 = 1.
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This implies

NE =
{
(A1, A2,

√
−2EL3)

}
≃ S2.

The retrograde and direct orbits correspond to the points

γ± = (0, 0,±1).

The total energy c = E + L3 is determined by L3-component, meaing

that c serves as a height function on NE , which is a Morse function. The

regular level sets of c is S1-families of ellipses that are invariant under the

L3-action. The retrograde and direct orbits correspond to the maximum and

minimum of the total energy, respectively.

Now let ME denote the moduli space of orbits for the regularized spatial

Kepler problem with Kepler energy E. Specifically, ME is the level set of

KE : T ∗S3 → R, quotiented by S1-action induced by the Hamiltonian flow.

To determine an ellipse in R3 with one focus at the origin, we need to

specify:

1. The plane containing the ellipse and rotation direction (given by L),

2. The major axis (given by A),

3. The eccentricity (given by ε2 = |A|2 = 2EL2 + 1).

Thus, the angular momentum L and the Laplace-Runge-Lenz vector A, to-

gether with E, uniquely characterizes the Kepler orbit.

Lemma 4.3.3. A map Φ defined as

Φ : ME → S2 × S2

γ 7→
(√

−2EL−A,
√
−2EL+A

)
is a well-defined bijection.

Proof. Let (x, y) =
(√

−2EL−A,
√
−2EL+A

)
. We verify

|x|2 = −2EL2 +A2 −
√
−2EL ·A = −2EL2 +A2 = 1,

|y|2 = −2EL2 +A2 +
√
−2EL ·A = −2EL2 +A2 = 1.
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Hence, (x, y) ∈ S2 × S2. Given (x, y), we reconstruct L and A by

L =
x+ y

2
√
−2E

, −A =
x− y

2
.

Using L and A, the orbit γ can be reconstructed as decribed in Theo-

rem 4.1.4.

This result matches Theorem 4.3.2, providing explicit coordinates (x, y)

on ME . We note some properties of this parametrization.

1. Eccentricity: ε = |A| = |x− y|/2.

2. Circular orbits: Circular orbits correspond to the diagonal {x = y},
which is A = 0, forming an S2-family.

3. Planar Orbits: Planar orbits satisfy L1 = L2 = A3 = 0, giving

NE =
{
(x, y) ∈ S2 × S2 : x1 = −y1, x2 = −y2, x3 = y3

}
≃ S2.

4. Retrograde and direct orbits: These correspond to

γ+ = ((0, 0, 1), (0, 0, 1))

γ− = ((0, 0,−1), (0, 0,−1)).

5. Collision Orbits: Collision orbits correspond to the anti-diagonal

{x = −y}, which is L = 0, also forming an S2-family.

6. Vertical collision orbits: These correspond to

γc+ = ((0, 0, 1), (0, 0,−1))

γc− = ((0, 0,−1), (0, 0, 1))

To discuss the rotating Kepler problem with this framework, we need to

consider the total energy c = E +L3. First, we analyze the S1-action corre-

sponding to L3, which represents rotations along q3- and p3-axis. The action
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on ME is given by

θ · (x, y) =
(
eiθ(x1 + ix2), x3, e

iθ(y1 + iy2), y3

)
where the q1q2-plane and p1p2-plane are identified with C for convenience.

This action is free except at four points: γ± and γc± .

For a fixed Kepler energy E, varying c is equivalent to varying L3. Using

the coordinates (x, y) of ME , L3 is determined by x3 + y3. Denoting this

function as f , we define

f : S2 × S2 → [−2, 2]

(x, y) 7→ x3 + y3.

There are exactly four critical points of f , corresponding to γ± and γc± .

These are precisely the fixed points of the S1-action associated with L3, a

consequence of Noether’s theorem.

The function f is a Morse function; γ− is a minimum with index 0, γ+

is a maximum with index 4, and γc± are saddle points with index 2. From

the perspective of Morse homology or handle attachment, the level sets of

f are described as follows:

f−1(a) =



{γ−} if a = −2

S3 if − 2 < a < 0

S if a = 0

S3 if 0 < a < 2

{γ+} if a = 2

where S is homeomorphic to ΣT 2, the suspension of T 2. To better under-

stand this, define the function

g : S → [−2, 2]

(x, y) 7→ x3 − y3
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which is proportional to A3. The level sets of g are given by

g−1(b) =


{γc−} if b = −2

T 2 if − 2 < b < 2

{γc+} if b = 2

Note 4.3.4. The space ΣT 2 is homotopy equivalent to S3 ∨ S2 ∨ S2. In

particular, it is not a manifold, as the link of the vertices is T 2, not a sphere.

Note that for 0 ̸= a ∈ (−1, 1), we can similarly define

g : f−1(a) → [−(2− |a|), 2− |a|]

(x, y) 7→ x3 − y3.

where the level sets are

g−1(b) =


S1 if b = −(2− |a|)
T 2 if − (2− |a|) < b < 2− |a|
S1 if b = 2− |a|

This provides a Heegaard decomposition of S3 for each energy level set S3.

These observations lead to the definition of the following map

F : ME → R2

(x, y) 7→ (x3, y3)

The map F has the following properties:

1. F has exactly 4 critical points, γ± and γc± .

2. Edges of the picture correspond to the spaces

γ−γc+ = (0, 0,−1)× S2,

γ−γc− = S2 × (0, 0,−1)

γc+γ+ = S2 × (0, 0, 1)

γc−γ+ = (0, 0, 1)× S2
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3. The edges are the singular locus of F , where dF has rank 1, except

for 4 endpoints, where dF has rank 0.

4. The fiber of F for interior points on the edges is S1.

5. All other points are regular, with fibers S1 × S1.

This is the standard toric diagram of S2 × S2, illustrated in Figure 4.10

Figure 4.10: The toric picture of ME .

4.3.3 Periodic Orbits

The period of a Kepler orbit with Kepler energy E is given by

τ =
2π

(−2E)3/2
.

As in the planar case, the orbit of the spatial rotating Kepler problem is the

composition of FlXE
t and Fl

XL3
t .

There are two planar circular orbits, the retrograde orbit γ+ and the

direct orbit γ−, which are periodic for any Kepler energy. Similarly, the ver-

tical collision orbits γc± are not effected by L3-action, making them periodic

for any Kepler energy as well.
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In general, as in the planar case, the Kepler orbit must have period

2π(k/l) to be periodic for the rotating Kepler problem. This requires that

the Kepler energy satisfies

E = Ek,l = −1

2

(
k

l

)2/3

.

for some k, l ∈ N. An example is illustrated in Figure 4.11. This implies that

at the energy level Ek,l, periodic orbits emerge as a family parameterized by

ME . The situation is depicted in Figure 4.122.

Figure 4.11: A spatial periodic orbit of Kepler energy E3,2, initial conditions
q2 = q3 = p1 = 0 and (p2, p2) = (

√
3/2, 1/2).

If we fix the total energy level c < −3/2, the periodic orbits contained in

the level set H−1(c) are as follows. This scenario is illustrated in Figure 4.13.

2We thank Chankyu Joung for providing the illustration.
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Figure 4.12: The family of orbits at Kepler energy E3,2.

1. The retrograde orbit γ+ : This has Kepler energy E+ satisfying

E+ +
1√

−2E+
= c.

2. The direct orbit γ− : This has Kepler energy E− satisfying

E− − 1√
−2E−

= c.

3. Two vertical collision orbits γc± : These have Kepler energy E = c.

4. The S3-family of elliptic orbits : These orbits correspond to Kepler

energies Ek,l for all k, l such that

E− < Ek,l < E+.

5. The ΣT 2-family of orbits : The family appears only if c = Ek,l for
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some k, l. This family includes two vertical collision orbits.

6. Multiple covers of above orbits.

Figure 4.13: A family of orbits with total energy c = −2.1. The figure in-
cludes the direct orbit, two vertical collisions, and the retrograde orbit. The
blue lines correspond to E6,1, E7,1, E8,1, E9,1, E10,1. For each intersection,
there exists an S3-family of orbits. Note that there are infinitely many Ek,l

values not shown in the diagram.

4.4 Conley-Zehnder Index of Periodic Orbits

In this section, we compute the Conley-Zehnder index of periodic orbits in

the spatial Kepler problem. We begin by determining the indices of the mul-

tiple covers of the non-degenerate retrograde, direct, and vertical collision

orbits and then consider the orbits with Kepler energy Ek,l.

4.4.1 Index of Retrograde and Direct Orbits

Following the strategy of [AFFvK13], as described in Proposition 4.2.2, we

use cylindrical coordinates to treat the planar circular orbits γ±. Consider
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the coordinate transformation

(q1, q2, q3) = (r cos θ, r sin θ, z)

(p1, p2, p3) = (pr cos θ −
pθ
r
sin θ, pr sin θ +

pθ
r
cos θ, pz)

where pr, pθ, pz are defined such that

p1dq1 + p2dq2 + p3dq3 = prdqr + pθdθ + pzdz.

Note that q1p2 − q2p1 = pθ. In these coordinates, the Hamiltonian for the

rotating Kepler problem is given by

H(r, θ, z, pr, pθ, pz) =
1

2

(
p2r +

p2θ
r2

+ p2z

)
+ pθ −

1√
r2 + z2

.

and the corresponding Hamiltonian vector field is

XH = pr∂r+
(pθ
r2

+ 1
)
∂θ+pz∂z+

(
p2θ
r3

− r

(r2 + z2)3/2

)
∂pr−

z

(r2 + z2)3/2
∂pz

We impose the conditions for the planar circular orbits.

1. Planar : z = pz = 0.

2. Circular : r = r0 is constant. From this, it follows that ṙ = pr = 0

and ṗr = 0. Combined with z = 0, this implies p2θ = r0. We take

pθ = ±√
r0. For shorthand, we write pθ = ω0.

Under these conditions, the Hamiltonian vector field simplifies to

XH =

(
1

ω3
0 + 1

)
∂θ
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and the orbit can be expressed as

r(t)

θ(t)

z(t)

pr(t)

pθ(t)

pz(t)


=



ω2
0(

1
ω3
0
+ 1
)
t

0

0

ω0

0


.

As stated in Proposition 4.2.2, ω0 = ±√
r0 correspond to γ± respectively,

with a period given by

τ± = ± 2π

1/ω3
0 + 1

.

Since r0 = −1/2E holds here as well, we can write

τ± =
2π

(−2E)3/2 ± 1

assuming that E < −1/2.

From Proposition 2.5.4, the Conley-Zehnder index can be computed

using the linearized Hamiltonian flow. Denote the perturbation vector by

∆ = (∆r,∆θ,∆z,∆pr,∆pθ,∆pz). The linearized flow is governed by

∆̇ = L∆

where L is the linearization matrix obtained by differentiating XH ,

L =



0 0 0 1 0 0

−2pθ/r
3 0 0 0 1/r2 0

0 0 0 0 0 1

−3p2θ/r
4 + 3r2/R5 − 1/R3 0 3rz/R5 0 2pθ/r

2 0

0 0 0 0 0 0

3rz/R5 0 3z2/R5 − 1/R3 0 0 0


.

104



CHAPTER 4. PERIODIC ORBITS OF SPATIAL KEPLER PROBLEM

Here, R =
√
r2 + z2. After substituting the orbit γ±, we find

L =



0 0 0 1 0 0

−2/ω5
0 0 0 0 1/ω4

0 0

0 0 0 0 0 1

−1/ω6
0 0 0 0 2/ω3

0 0

0 0 0 0 0 0

0 0 −1/ω6
0 0 0 0


.

We need to determine the frame of ker(dH) ∩ ker(λ) along the orbit. We

have

dH =

(
−
p2θ
r3

+
r

(r2 + z2)3/2

)
dr +

z

(r2 + z2)3/2
dz

+ prdpr +
(
1 +

pθ
r2

)
dpθ + pzdpz

which simplifies to

dH =

(
1 +

1

ω3
0

)
dpθ

along the orbit. The contact form is given by

λ = −qdp = pθdθ − rdpr − zdpz

which simplifies to

λ = ω0dθ − ω2
0dpr

along the orbit.

Note 4.4.1. Here, we use−qdp instead of the standard pdq, as in the context

of Moser regularization, the roles of p and q are interchanged. Specifically,

let X = q∂q so that iXω = −qdp. Note that X(H) = 1/|q|+ L3, and X(H)

must be positive. This can be seen as a special case of a similar phenomenon

in the restricted three-body problem. See Theorem 5.2.1 in [CJK20].

With this, we can find a symplectic frame

(X1, X2, X3, X4) =

(
∂θ +

1

ω0
∂pr , ω0∂r, ∂pz , ∂z

)
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where ω(X1, X2) = ω(X3, X4) = 1 and ω(Xi, Xj) = 0.

Lemma 4.4.2 ([AFFvK13], Appendix B). Let T ∗S2 ⊂ T ∗R3 with coordi-

nates (x, y) such that |x|2 = 1 and ⟨x, y⟩ = 0. Let K : T ∗S2 → R be a

fiberwise star-shaped Hamiltonian such that y∂yK > 0, and let the contact

form be given by λ = ydx. Then,

X1 =

(
y × x− (y × x) · ∂yK

y · ∂yK

)
· ∂y

X2 = −(y × x) · ∂xK
y · ∂yK

y · ∂y + (y × x) · ∂x

provides a global trivialization of kerλ ∩ ker dK.

Lemma 4.4.3. The framing X1, X2, X3, X4 given above can be extended to

a capping disk.

Proof. From [AFFvK13] Appendix B, X1, X2 corresponds to the framing in

the planar orbit given in the previous lemma. Thus, X1, X2 can be extended

to a planar capping disk. Since X3, X4 do not involve planar coordinates,

they can also be extended to the capping disk.

We also take a normal frame

(N1, N2) =

(
1

ω0
∂θ, ω0∂pθ + ω2

0∂r

)
such that ω(N1, N2) = 1 and ω(Xi, Nj) = 0. Note that N1 represents the

Reeb direction of λ. We have

LX1 = (1/ω0)∂r = (1/ω2
0)X2,

LX2 = −(2/ω4
0)∂θ − (1/ω5

0)∂pr = −(1/ω4
0)X1 − (1/ω3

0)N1,

LX3 = ∂z = X4,

LX4 = −(1/ω6
0)∂pz = −(1/ω6

0)X3.
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The linearized flow matrix under the frame (X1, X2, X3, X4) is

L =


0 −1/ω4

0 0 0

1/ω2
0 0 0 0

0 0 0 −1/ω6
0

0 0 1 0


By taking the matrix exponential, we obtain the path of symplectic matrices

ΨH(t) =


cos(t/ω3

0) −(1/ω0) sin(t/ω
3
0) 0 0

ω0 sin(t/ω
3
0) cos(t/ω3

0) 0 0

0 0 cos(t/ω3
0) −(1/ω3

0) sin(t/ω
3
0)

0 0 ω3
0 sin(t/ω

3
0) cos(t/ω3

0)


The crossings occur exactly at 2πω3

0Z. The crossing form is given by ΩΨ̇(t)

where Ω is defined in Section 2.5.1,

Ω =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 .

We have

ΩΨ̇H(t) = ΩL =


1/ω2

0 0 0 0

0 1/ω4
0 0 0

0 0 1 0

0 0 0 1/ω6
0


so the signature of the crossing forms is always 4. Using ω0 = ±1/

√
−2E,

we derive the following result.

Proposition 4.4.4. Let γ± denote the retrograde and direct orbits of Kepler

energy E, where E ̸= Ek,l for any k, l. Then, γ± and their multiple covers
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are non-degenerate. The Conley-Zehnder index of N -th iterate of γ± is

µCZ(γ
N
± ) = 2 + 4max

{
n ∈ Z>0 :

2πn

(−2E)3/2
< N

2π

(−2E)3/2 ± 1
.

}
= 2 + 4max

{
n ∈ Z>0 : n < N

(−2E)3/2

(−2E)3/2 ± 1

}

= 2 + 4

⌊
N

(−2E)3/2

(−2E)3/2 ± 1

⌋

Note 4.4.5. This is exactly twice the index of the retrograde and direct

orbits in the planar problem, which was computed in [AFFvK13] and intro-

duced in Theorem 4.2.3.

We write

µ± = µ±(E) =
(−2E)3/2

(−2E)3/2 ± 1
.

The functions µ± are illustrated in Figure 4.14. Here’s some observation

about the indices of γ±.

Figure 4.14: The graph of µ±.
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1. Behavior for small E : For given N , there exists a sufficiently small

E such that Nµ+ < 1 and 1 < Nµ− < 2. Hence,

µCZ(γ
N
+ ) = 4N − 2

µCZ(γ
N
− ) = 4N + 2

for every small E.

2. Decreasing behavior of retrograde orbits : The index µCZ(γ
N
+ )

decreases by 4 each time µ+ touches k/N for some k = 1, · · · , N − 1.

The corresponding energies satisfy

(−2E)3/2

(−2E)3/2 + 1
=

k

N

or equivalently

E = Ek,N−k = −1

2

(
k

N − k

)2/3

3. Increasing behavior of direct orbits : The index µCZ(µ
N
− ) in-

creases by 4 each time µ− touches 1+ k/N for some k = 1, 2, · · · . The
corresponding energies satisfy

E = EN+k,k = −1

2

(
N + k

k

)2/3

.

We summarize the result as follows.

Theorem 4.4.6. For fixed N , the Conley-Zehnder index of N -th cover of

retrograde orbit with Kepler energy E is:

µCZ(γ
N
+ ) =


4N − 2 if E < EN−1,1

4(N − k)− 2
if EN−k,k < E < EN−k−1,k+1

for k = 1, 2, · · · , N − 2

2 if E > E1,N−1

In particular, the simple retrograde orbit has always index 2.
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Similarly, the Conley-Zehnder index of N -th cover of the direct orbit is:

µCZ(γ
N
− ) =


4N + 2 if E < EN+1,1

4(N + k) + 2
if EN+k,k < E < EN+k+1,k+1

for k = 1, 2, · · · ,

In particular, the indices of direct orbits diverge as E → −1/2.

4.4.2 Index of Vertical Collision Orbits

For the vertical collision orbits, we use the result of Lemma 4.3.1. We impose

the condition of vertical collision orbits, which is given by

γc±(t) = (x(t), y(t))

= (− cos(rt), 0, 0,± sin(rt), (1/r) sin(rt), 0, 0,±(1/r) cos(rt))

in T ∗S3. In this case, we have x1 = x2 = y1 = y2 = 0, so that f(x, y) = r

and |y| = 1/r in Lemma 4.3.1.

Lemma 4.4.7. Along the vertical collision orbit in T ∗S3, we can take

(X1, X2, X3, X4) = (∂y1 , ∂x1 , ∂y2 , ∂x2)

as a symplectic frame of the contact structure of K−1(1/2).

Proof. We can take y ·∂y as a Liouville vector field, so λ = iXdy∧ dx = ydx

as a contact form. It is clear that Xi are tangent to T ∗S3 along the vertical

collision orbit. Additionally,

dK = r2y0dy0 + r2y3dy3,

λ = y0dx0 + y3dx3

along the orbit, so Xi ∈ kerλ∩ ker dK. Finally, ω(X1, X2) = ω(X3, X4) = 1

and ω(Xi, Xj) = 0 otherwise, verifying that (X1, X2, X3, X4) forms a sym-

plectic frame.

Lemma 4.4.8. The symplectic frame given in Lemma 4.4.7 is valid along γc
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regarded as an orbit of KE. The frame can also be extended to a symplectic

frame on a capping disk of γc in K−1
E (1/2).

Proof. For simplicity, assume r = 1. Consider the cotangent bundle of the

subspace

S = {(cos t cos θ, sin θ, 0, sin t cos θ)} ⊂ S3.

Here, T ∗S is a subset of T ∗R3 = {x2 = y2 = 0}. Applying Lemma 4.4.2

to the (x0, x1, x3)-coordinate and the Hamiltonian K = |y|2/2, we observe

that X1, X2 match the frame given in the lemma along the orbit. If we take

a capping disk D in ST ∗S = K−1(1/2) ∩ T ∗S, as in Lemma 4.4.3, X3, X4

can be extended to D.

Now, we calculate the linearized flow by differentiating Hamiltonian

equation
ẏ1

ẋ1

ẏ2

ẋ2

 =


|y|2f(−ay2(1− x0)− x1(r + a(x1y2 − x2y1)))

f2y1 − a|y|2fx1x2(1− x0)

|y|2f(ay1(1− x0)− x2(r + a(x1y2 − x2y1)))

f2y2 + a|y|2fx1x2(1− x0)

 .

After substituting x1 = x2 = y1 = y2 = 0, we find

L =


0 −r|y|2f −a|y|2f(1− x0) 0

f2 0 0 0

a|y|2f(1− x0) 0 0 −r|y|2f
0 0 f2 0

 .

Using f = r, |y| = 1/r and 1− x0 = 1 + cos(rt), we get

L =


0 −1 −a(1 + cos(rt))/r 0

r2 0 0 0

a(1 + cos(rt))/r 0 0 −1

0 0 r2 0


Since L is time-dependent, directly integrating it is challenging. Instead, we

use the following lemma to compute the Conley-Zehnder index.
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Lemma 4.4.9. Let KE be the regularized Hamiltonian of the (non-rotating)

Kepler problem given in Section 4.1.3. Let ΨKE
and ΨL3 be paths of sym-

plectic matrices given by the linearized flow of KE and L3. Then,

µCZ(γc) = µRS(ΨKE
) + µRS(ΨL3).

Proof. See the end of this subsection.

By setting a = 0 in L we find the linearized flow ofKE . After integration,

the resulting path of symplectic matrices is

ΨKE
(t) =


cos(rt) sin(rt)/r 0 0

−r sin(rt) cos(rt) 0 0

0 0 cos(rt) sin(rt)/r

0 0 −r sin(rt) cos(rt)


Notice that the period of ΨKE

is equal to the period of the collision orbit.

The crossing occurs at t = (2π/r)Z, and the crossing form is

ΩΨ̇KE
(τ) =


r2 0 0 0

0 1 0 0

0 0 r2 0

0 0 0 1

 .

It follows that the signature of the crossing form is always 4.

Next, we compute the index of the orbit of the angular momentum L3

on T ∗R3. The Hamiltonian equation is given by

q̇1

q̇2

q̇3

ṗ1

ṗ2

ṗ3


=



−q2
q1

0

−p2
p1

0


and the linearization matrix with respect to the symplectic basis ∂p1 , ∂q1 , ∂p2 , ∂q2
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is

M =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 .

The linearized flow is given by

ΨL(t) =


cos t 0 sin t 0

0 cos t 0 sin t

− sin t 0 cos t 0

0 − sin t 0 cos t

 .

The crossing occurs at 2πZ, and the crossing form is

ΩΨ̇L(τ) = ΩM =


0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0


so the signature of the crossing form is zero. Combining these results, we

have the following.

Proposition 4.4.10. Let γc± be the vertical collision orbits of Kepler energy

E, where E ̸= Ek,l for any k, l. Then γc± and their multiple covers are non-

degenerate. The Conley-Zehnder index of the N -th iterate of γc± is

µCZ(γ
N
c±) = µRS(ΨKE

) + µRS(ΨL)

= (2 + 4(N − 1) + 2) + 0 = 4N

In particular, the index of the multiple cover of vertical collision orbits never

changes.

Proof of Lemma 4.4.9

Let H = E +L3 be the Hamiltonian of rotating Kepler problem, and let K

be the regularized Hamiltonian. We denote the regularized (non-rotating)
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Kepler Hamiltonian by KE . Let γ : [0, τ ] → T ∗S3 be a K-orbit. Since the

flow of K and H are parallel, with Lemma 2.5.3 we have

µCZ(γ) = µRS(ΨK) = µRS(ΨH)

except for the collision orbits, which H is not defined.

We first extend ΨH to the collision locus. Let γ : [0, τ ] → T ∗S3 be a

K-orbit such that γ(0) lies on the collision locus. Let A : γ∗ξ → [0, τ ]× R4

be a trivialization of the contact structure along γ. For ε > 0, find an H-

orbit γ̃ε : [0, σ(ε)] → T ∗R3, which is a reparametrization of γ|[ε,τ ]. Under the
inverse stereographic projection, we can regard γ̃ε as an orbit on T ∗S3. We

define
Φε
τ = A(t)−1dF lXH

σ(ε)|ξA(ε) ∈ Sp(4),

Ψε = A(ε)−1dF lXK
ε |ξA(0) ∈ Sp(4)

Then we have Ψτ = Φε
τΨε. It’s clear that limε→0Ψε = Ψ0 = Id, so that

lim
ε→0

Φε
τ = Ψτ .

In a similar way, we can extend ΨE to the collision locus.

Now since H = E + L and {E,L} = 0, we have

dF lXH
t = dF l

XL3
t ◦ dF lXE

t

If we restrict ourselves to the collision orbit, we get

A(t)dF lXH
t |ξA(0)−1 =

(
A(t)dF l

XL3
t |ξA(t)−1

)(
A(t)dF lXE

t |ξA(0)−1
)
.

From Theorem 2.5.1, we know that

µRS(ΨH) = µRS(ΨL3) + µRS(ΨE).

Since E-orbit is a reparamerization ofKE-orbit, we have µRS(ΨE) = µRS(ΨKE
),

which leads us to the conclusion. Moreover, since the L3-orbit with initial

conditions on the collision orbit is constant, we can compute the index with

respect to any frame.
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4.4.3 Relation with Symplectic Homology

With the rotating Kepler Hamiltonian H : T ∗S3 → R, we consider the

symplectic homology of T ∗S3. Viterbo’s theorem (Theorem 2.5.6) states that

the symplectic homology of T ∗S3 is isomorphic to the loop space homology

of S3.

Proposition 4.4.11. Let ΛS3 denote the free loop space of S3. Then,

H∗(ΛS
3,Z2) =

{
Z2 if ∗ = 0 or ∗ ≥ 2

0 otherwise.

Proof. It is well-known, for example, from [BT82], that the homology of the

based loop space ΩS3 of S3 is given by

H∗(ΩS
3,Z2) =

{
Z2 if ∗ = 2k ≥ 0,

0 otherwise.

We have a fibration ΩS3 → ΛS3 → S3, which is trivial since S3 is a Lie

group. Applying the Künneth formula yields the result.

By Viterbo’s theorem, SH∗(ST
∗S3) ≃ H∗(ΛS3,Z2). Additionally, we

have the following result regarding S1-equivariant symplectic cohomology.

Proposition 4.4.12 ([KvK16], Proposition 5.12). The +-part of the S1-

equivariant symplectic homology of T ∗S3 is given by

SHS1,+
∗ (T ∗S3) =


Z2 if ∗ = 2

Z2
2 if ∗ = 2k ≥ 4

0 otherwise

We now relate our result to Proposition 4.4.12. Fix N ∈ N. Let c < −3/2

with c ̸= Ek,l for any k, l. Denote

c±k,l = Ek,l ±
1√

−2Ek,l

for the total energy of the retrograde orbit and direct orbit with Kepler
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energy Ek,l. There exists an energy level c ≪ −3/2 sufficiently small such

that:

1. µCZ(γ
k
+) = 4k − 2 for k ≤ N .

2. µCZ(γ
k
−) = 4k + 2 for k ≤ N .

3. Higher iterates of the retrograde orbit have index≥ 4N − 2.

This condition is achieved by taking c smaller thann c+N,1. Each cover of

γ± and γc± is a Morse-Bott manifold S1 since it is isolated, and generates

SHS1,+(T ∗S3). Analyzing this setup, we find:

1. One generator at degree 2, corresponding to the simple retrograde

orbit,

2. Two generators at degree 4k + 2 for k = 1, . . . , N − 1, corresponding

to the (k + 1)-th cover of the retrograde orbit and k-th cover of the

direct orbit.

3. Two generators at degree 4k for every k ∈ N, corresponding to two

vertical collision orbits.

Since the degree gap between generators are 2, differentials can be neglected.

This result matches the +-part of S1-equivariant symplectic homology of

T ∗S3 described in Proposition 4.4.12 up to degree 4N −2. By appropriately

choosing c, we compute SHS1,+(T ∗S3) up to the desired degree using only

the rotating Kepler orbits.

We assume that the degenerate S3-families are Morse-Bott. In the pla-

nar problem, Morse-Bott-ness of degenerate orbits can be verified using De-

launey coordinate, which is described in [Bar65]. To determine the Conley-

Zehnder index of degenerate S3-families, we consider an example illustrated

in Figure 4.15. Assume that

c− < c4,1− < c+ < c5,2− ,

so that

µCZ(γ
3
−) =

{
14 if c = c−,

18 if c = c+.
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Figure 4.15: Illustration of the local Floer invariance.

There exists an S3-family of orbits Σ contained in H−1(c+) that is not

contained inH−1(c−). This family has Kepler energy E3,1. From the spectral

sequence given in Figure 4.16, the shift of Σ must be 14. It follows that

µCZ(Σ) = sh(Σ) +
1

2
dimΣ/S1 = 14 + 3/2 = 15.5.

We can deduce the same result by considering the fifth cover of the

retrograde orbit, which has index 18 at an energy slightly smaller than c4,1+

and index 14 at an energy slightly larger than c4,1− .

To deepen our understanding of the phenomenon, we consider the sit-

uation illustrated in Figure 4.17. The two blue lines correspond to E11,1

(with a degree shift 42) and E12,2 (with a degree shift 46). At c− < c11,1+ ,

the index of the 10-th cover of the direct orbit, γ10− , is 50. The contribution

of γ10− , together with the S3-families of Kepler energy E11,1 and E12,2 to
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Figure 4.16: Illustration of local Floer invariance for the triple cover of the
direct orbit near E4,1.

SHS1,+(T ∗S3) is at the degree 42. Meanwhile, the contribution of the 12-th

cover of the retrograde orbit is at the degree 46.

At c+ > c11,1+ , the index of γ12+ becomes 42. In this case, the contribution

of γ12+ is the degree 42. Meanwhile, as the E11,1-family is no longer present

in H−1(c+), the contribution of γ10− together with the E12,2-family shifts to

degree 46. The contributions of the two orbits are effectively interchanged

due to the disappearance of the E11,1-family, which merges into γ12+ .

In general, we can state the following.

Theorem 4.4.13. Assume that the degenerate S3-family of the rotating

Kepler problem with Kepler energy Ek,l is Morse-Bott. Then the Conley-

Zehnder index of the S3-family of orbits is equal to 4k − 1/2.

Proof. From the above discussion, the degree shift of such a family must be

equal to 4k− 2. Let the corresponding Morse-Bott submanifold be Σ. Since

any bundle over S3 is trivial, Σ is diffeomorphic to S3 × S1. Thus, we have

4k − 2 = sh(Σ) = µCZ(Σ)−
1

2
dimΣ/S1 = µCZ(Σ)− 3/2.
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Figure 4.17: Illustration of local Floer invariance for γ10− and γ12+ near E11,1.
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Figure 4.18: Morse-Bott spectral sequence at the energy level c− < E11,1

(left) and c+ > E11,1 (right). Black, blue and red dots correspond to γ10− ,
γ12+ and E11,1, E12,2-families, respectively.
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P. Yanguas, The Hénon and Heiles problem in three dimensions.

I. Periodic orbits near the origin, Internat. J. Bifur. Chaos Appl.

Sci. Engrg. 8 (1998), no. 6, 1199–1213. MR 1663774
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국문초록

이 논문의 전반부는 볼록성을 가지는 역학적 해밀토니안 벡터장과 볼록한

초곡면 위의 측지선 벡터장에 대한 대역적 절단 초곡면의 존재성에 대해 다룬

다. 이는 버코프 원기둥의 일반화로 볼 수 있으며, 케플러 문제를 비롯한 여러

가지 예시를 제시할 것이다.

이 논문의 후반부는 3차원에서 정의된 회전 케플러 문제, 특히 주기성을

가지는 궤도에 대해 다룬다. 먼저 각운동량과 라플라스-렌츠-룽게 벡터를 이

용하여 궤도들의 모듈라이 공간을 묘사하는 법에 대해 서술할 것이다. 그 뒤

주기성을 가지는 궤도를 모두 분류하고, 해당 궤도들의 콘리-젠더 인덱스를

계산한 뒤 이를 심플렉틱 호몰로지를 이용하여 해석할 것이다.

주요어휘: 대역적 절단 초곡면, 케플러 문제, 사교기하학, 해밀토니안 동역학,

콘리-젠더 인덱스

학번: 2018-26173
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